
NSF Org: |
EEC Division of Engineering Education and Centers |
Recipient: |
|
Initial Amendment Date: | September 27, 1995 |
Latest Amendment Date: | September 27, 1995 |
Award Number: | 9527576 |
Award Instrument: | Standard Grant |
Program Manager: |
John C. Hurt
EEC Division of Engineering Education and Centers ENG Directorate for Engineering |
Start Date: | October 1, 1995 |
End Date: | September 30, 1999 (Estimated) |
Total Intended Award Amount: | $550,000.00 |
Total Awarded Amount to Date: | $550,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
3112 LEE BUILDING COLLEGE PARK MD US 20742-5100 (301)405-6269 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
3112 LEE BUILDING COLLEGE PARK MD US 20742-5100 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ERC-Eng Research Centers |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041 |
ABSTRACT
; R o o t E n t r y F W g C o m p O b j b W o r d D o c u m e n t O b j e c t P o o l 3 g 3 g - . / 0 1 2 3 4 5 6 7 F Microsoft Word 6.0 Document MSWordDoc Word.Document.6 ; 9527576 Krishnaprasad This award is the University of Maryland with a sub-contract to North Carolina State University at Raleigh. The overall goal of this effort is to demonstrate a methodology for sensor-integrated control of rapid thermal chemical vapor deposition (RTCVD) of polycrystalline silicon (poly Si) from silane with focus on controlling deposition thickness and across-wafer uniformity. The project exploits advances in real-time sensors, including pyrometry for temperature, thermal imaging for temperature uniformity, and sampling mass spectrometry for thickness metrology and process ambient monitoring. Reduced-order process models constructed from high fidelity heat and fluid flow simulations, together with physically-based dynamic equipment, process, and sensor simulations, are the basis for control models. Resulting run-to-run control methodologies for controlling deposition thickness and across-wafer uniformity are being developed and validated experimentally, and real-time control approaches are being explored. These run-to-run control approaches will be extendible to real-time c ontrol. An architecture to support a basic supervisory control component is being demonstrated, using physically-based dynamic simulation to determine sensor signatures of specific equipment failure modes, together with advanced algorithms as interference tools for detecting sensor signal correlations and identifying indicated equipment/process malfunction. The investigators at the University of Maryland provide the effort on simulation and control, while the investigators at North Carolina State University provide the effort on sensors and on rapid thermal chemical vapor deposition of polycrystalline silicon. The experimental proof of concept of the control system will be performed in the cluster tool deposition apparatus at North Carolina State University. *** 0 0 Oh +' 0 $ H l D h , \\CLM15\SMURPHY$\WWUSER\TEMPLATE\NORMAL.DOT S u m m a r y I n f o r m a t i o n ( , 9527576 SHERONDA MURPHY SHERONDA MURPHY @ X g @ @ X g @ Microsoft Word 6.0 2 ; e = e d d l l l l l l l 1 % D T G 9 l l l l l l l l l s 9527576 Krishnaprasad This award is the University of Maryland with a sub-contract to North Carolina State University at Raleigh. The overall goal of this effort is to demonstrate a methodology for sensor-integrated control of rapid thermal chemical vapor deposition (RTCVD) of polycrystalline silicon (poly Si) from silane with focus on controlling deposition thickness and across-wafer uniformity. The project exploits advances in real-time sensors, including pyrometry for temperature, thermal imaging for temperature uniformity, and sampling mass spectrometry for thickness metrology and process ambient monitoring. Reduced-order process models constructed from high fidelity heat and fluid flow simulations, together with physically-based dynamic equipment, process, and sensor simulations, are the basis for control models. Resulting run-to-run control methodologies for controlling deposition thickness and across-wafer uniformity are being developed and validated experimentally, and real-time control approaches are being explored. These run-to-run control approaches wi
Please report errors in award information by writing to: awardsearch@nsf.gov.