Award Abstract # 2423241
I-Corps: Translation Potential of an Autonomous Wireless Charging System for Vertical Takeoff and Landing of Unmanned Aerial Vehicles

NSF Org: TI
Translational Impacts
Recipient: NORTH CAROLINA STATE UNIVERSITY
Initial Amendment Date: May 13, 2024
Latest Amendment Date: May 13, 2024
Award Number: 2423241
Award Instrument: Standard Grant
Program Manager: Jaime A. Camelio
jcamelio@nsf.gov
 (703)292-2061
TI
 Translational Impacts
TIP
 Directorate for Technology, Innovation, and Partnerships
Start Date: May 15, 2024
End Date: April 30, 2025 (Estimated)
Total Intended Award Amount: $50,000.00
Total Awarded Amount to Date: $50,000.00
Funds Obligated to Date: FY 2024 = $50,000.00
History of Investigator:
  • Zeljko Pantic (Principal Investigator)
    zpantic@ncsu.edu
Recipient Sponsored Research Office: North Carolina State University
2601 WOLF VILLAGE WAY
RALEIGH
NC  US  27695-0001
(919)515-2444
Sponsor Congressional District: 02
Primary Place of Performance: North Carolina State University
2601 WOLF VILLAGE WAY
RALEIGH
NC  US  27695-0001
Primary Place of Performance
Congressional District:
02
Unique Entity Identifier (UEI): U3NVH931QJJ3
Parent UEI: U3NVH931QJJ3
NSF Program(s): I-Corps
Primary Program Source: 01002425DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 8609
Program Element Code(s): 802300
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.084

ABSTRACT

The broader impact of this I-Corps project is the development of a technology designed to enable fully autonomous drone charging. The autonomous system is created by developing a charging platform and adapting drone electronics for wireless charging. Autonomous wireless charging presents significant commercial opportunities across various sectors by enabling more efficient and independent drone operation. This technology can reduce labor costs and oversight in logistics and delivery services, agriculture, and emergency response services. The agricultural and delivery sectors are identified as first adopters due to their high maturity and technology readiness. Moreover, the ongoing deliberations about establishing regulatory frameworks for drone use are expected to open new opportunities for charger deployments. The autonomous charging technology and upcoming drone corridors can extend the drone reach and allow long-range and intercity drone flights. The high technology readiness level of the developed system makes it immediately deployable as soon as the commercial and legal framework is established.

This I-Corps project utilizes experiential learning coupled with a first-hand investigation of the industry ecosystem to assess the translational potential of the technology. The solution is based on the development of a high-power wireless drone charger with an integrated charging platform localization and alignment system. The alignment mechanism identifies the drone's position in the platform and promptly begins the wireless charging process within 30 seconds. The designed power converters are based on highly efficient wide bandgap semiconductor devices, which lead to improved gravimetric power density and flight distance with a single charge. The unique approach utilizes wireless charging pads for drone detection, coil alignment, and power transfer, offering a robust solution and eliminating the need for complex alignment circuits. The 700-W fully autonomous wireless charging system is the highest-power-level charger designed with an integrated alignment mechanism that does not require an additional sensing system. The system can also be modified for standalone operation using renewable energy sources such as solar energy for remote deployment. This deployment can be especially helpful in remote areas where electrification still needs to be reached or the power grid may not be present or reliable.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page