
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | September 6, 2023 |
Latest Amendment Date: | September 11, 2024 |
Award Number: | 2318796 |
Award Instrument: | Continuing Grant |
Program Manager: |
Xiaogang (Cliff) Wang
xiawang@nsf.gov (703)292-2812 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | October 1, 2023 |
End Date: | September 30, 2026 (Estimated) |
Total Intended Award Amount: | $800,000.00 |
Total Awarded Amount to Date: | $545,255.00 |
Funds Obligated to Date: |
FY 2024 = $276,955.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
4400 UNIVERSITY DR FAIRFAX VA US 22030-4422 (703)993-2295 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
4400 UNIVERSITY DR FAIRFAX VA US 22030-4422 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Secure &Trustworthy Cyberspace |
Primary Program Source: |
01002425DB NSF RESEARCH & RELATED ACTIVIT 01002526DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Reconfigurable intelligent surfaces (RISs) are designed to dynamically adjust the radio frequency (RF) environment to improve signal quality and coverage. It will be a critical component of the next generation (Next G) millimeter-wave (mmWave) wireless communication. However, RISs can also be conveniently manipulated by an attacker for malicious purposes such as gaining eavesdropping advantages, degrading wireless link quality, or poisoning channel estimation. These attacks will severely impact the availability, integrity, and security of Next G communication systems. Since the attackers can potentially alter the RF propagation environment at physical layer, conventional data encryption or authentication mechanisms at the data layer are not useful. To defeat these attacks, the project will carry out four tightly connected research thrusts at the physical layer: (i) to investigate and create RIS signal watermark embedding and signature appending to enable efficient and robust RIS signal/propagation path authentication, (ii) to localize malicious RISs through collaborative sensing for spectrum enforcement, (iii) to leverage neural network-based beamforming for low-probability-of-intercept and resilient RIS-assisted communication, and (iv) to build a mmWave testbed including the fabrication of a RIS and carry out experimental evaluation.
This project?s novelty is on creating physical layer security building blocks to protect RIS-assisted mmWave communication. The broader significance and importance are: (i) to lay the secure foundations of RIS-assisted communication, (ii) to securing RF communication in different frequency bands and paradigms, including backscatter and symbiotic communications, (iii) to contribute to the roadmap and standardization efforts of Next G Alliance, and (iv) to broaden the participation of underrepresented groups through various internship and outreach programs offered at participating universities.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.