
NSF Org: |
OAC Office of Advanced Cyberinfrastructure (OAC) |
Recipient: |
|
Initial Amendment Date: | August 24, 2023 |
Latest Amendment Date: | August 24, 2023 |
Award Number: | 2313122 |
Award Instrument: | Standard Grant |
Program Manager: |
Sharmistha Bagchi-Sen
shabagch@nsf.gov (703)292-8104 OAC Office of Advanced Cyberinfrastructure (OAC) CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2023 |
End Date: | August 31, 2026 (Estimated) |
Total Intended Award Amount: | $201,765.00 |
Total Awarded Amount to Date: | $201,765.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
500 S LIMESTONE LEXINGTON KY US 40526-0001 (859)257-9420 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
500 S LIMESTONE 109 KINKEAD HALL LEXINGTON KY US 40526-0001 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | OAC-Advanced Cyberinfrast Core |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Today's large-scale simulations are producing vast amounts of data that are revolutionizing scientific thinking and practices. For instance, a fusion simulation can produce 200 petabytes of data in a single run, while a climate simulation can generate 260 terabytes of data every 16 seconds with a 1 square kilometer resolution. As the disparity between data generation rates and available I/O bandwidths continues to grow, data storage and movement are becoming significant bottlenecks for extreme-scale scientific simulations in terms of in situ and post hoc analysis and visualization. The disparity necessitates data compression, which compresses large-scale simulations data in situ, and decompresses data in situ and/or post hoc for analysis and exploration. On the other hand, a critical step in extracting insight from large-scale simulations involves the definition, extraction, and evaluation of features of interest. Topological data analysis has provided powerful tools to capture features from scientific data in turbulent combustion, astronomy, climate science, computational physics and chemistry, and ecology. While lossy compression is leveraged to address the big data challenges, most existing lossy compressors are agnostic of and thus fail to preserve topological features that are essential to scientific discoveries. This project aims to research and develop advanced lossy compression techniques and software that preserve topological features in data for in situ and post hoc analysis and visualization at extreme scales. The success of this project will promote scientific research on driving applications in cosmology, climate, and fusion by enabling efficient and effective compression for scientific data, and the impact scales to other science and engineering disciplines. Furthermore, the research products of this project will be integrated into visualization and parallel processing curricula, disseminated via research and training workshops, and used to attract underrepresented students for broadening participation in computing.
This project tackles the data compression, analysis, and visualization needs in extreme-scale scientific simulations by developing a suite of topology-aware data compression algorithms for scalar field and vector field data. Such algorithms effectively reduce the size of data while preserving critical features defined by topological notions. This project will define and enforce topology-aware constraints over advanced lossy compression algorithms. Such capabilities have not been studied systematically within today?s data compression paradigm. This project will impact specific fields, including computational science, data analysis, data compression, and visualization, and the broader scientific community. The research products of this project will be delivered as publicly available software to significantly advance the research cyberinfrastructure for current and upcoming exascale systems. This project will foster novel discoveries in multiple scientific disciplines beyond cosmology, climate, and fusion by enabling efficient and effective compression on a wide range of platforms.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.