
NSF Org: |
EAR Division Of Earth Sciences |
Recipient: |
|
Initial Amendment Date: | June 6, 2023 |
Latest Amendment Date: | June 6, 2023 |
Award Number: | 2312211 |
Award Instrument: | Standard Grant |
Program Manager: |
Yurena Yanes
yyanes@nsf.gov (703)292-0000 EAR Division Of Earth Sciences GEO Directorate for Geosciences |
Start Date: | August 1, 2023 |
End Date: | July 31, 2026 (Estimated) |
Total Intended Award Amount: | $286,418.00 |
Total Awarded Amount to Date: | $286,418.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
886 CHESTNUT RIDGE ROAD MORGANTOWN WV US 26505-2742 (304)293-3998 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
98 Beechurst Avenue MORGANTOWN WV US 26505-4912 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Sedimentary Geo & Paleobiology |
Primary Program Source: |
|
Program Reference Code(s): | |
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
Collaborative Research: Paleozoic echinoderms as model systems for the study of evolutionary modes
Unraveling the drivers of evolution in the fossil record is critical for understanding how organisms occupy new morphologic, ecologic, and geographic spaces. This information, gleaned from the geologic past across climate perturbations, is vital for understanding and predicting how evolution will operate across the biodiversity and climate crises today. The research team will focus on groups of ancient echinoderms, marine invertebrates (e.g., sea stars) that were globally widespread through Earth?s history. This group is vastly understudied and, as such, analyses conducted on the group will provide critical insight into animal response to Earth systems perturbations. New organismal forms appear through shifts in developmental timing, called heterochrony. What is unclear is how shifts in climate, organism biogeography, and ecology affect heterochronic shifts. This research uses a holistic approach via multiple analyses, addressing changes in ecology, biogeography, and heterochrony through extreme climate events that occurred hundreds of millions of years ago, to explore aspects of organisms? evolutionary history and long-term consequences.
Database, museum, and literature data will be used jointly within phylogenetic frameworks to develop understanding of the evolutionary dynamics (i.e., changes in rates of evolution, heterochrony, biogeography, ecology) of extinct echinoderms. The chief merit of this research is the integration of multiple variables within a phylogenetic context to quantitatively understand broader patterns of evolution through abiotic change on Earth. This project will train the next generation of museum curators, educators, and researchers, and provide open-access information about echinoderms. Training will be conducted through undergraduate summer workshops on museum research techniques. Open access information about the echinoderm clades studied in this project will be published on the Digital Atlas of Ancient Life?s paleontology open access textbook. Echinoderm resources, created through this project and from previous works, will be collated on a WikiProject into one central hub for current and future echinoderm paleobiology researchers.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.