
NSF Org: |
OPP Office of Polar Programs (OPP) |
Recipient: |
|
Initial Amendment Date: | July 19, 2023 |
Latest Amendment Date: | July 19, 2023 |
Award Number: | 2233421 |
Award Instrument: | Standard Grant |
Program Manager: |
Penny Vlahos
pvlahos@nsf.gov (703)292-2671 OPP Office of Polar Programs (OPP) GEO Directorate for Geosciences |
Start Date: | August 1, 2023 |
End Date: | July 31, 2026 (Estimated) |
Total Intended Award Amount: | $161,000.00 |
Total Awarded Amount to Date: | $161,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
4333 BROOKLYN AVE NE SEATTLE WA US 98195-1016 (206)543-4043 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
4333 Brooklyn Ave NE Seattle WA US 98195-0001 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ANS-Arctic Natural Sciences |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.078 |
ABSTRACT
Over the last 40 years, the Arctic has warmed more than any other region on the planet. This greater-than-global Arctic warming is projected to continue with lasting impacts on human populations, ecosystems, and infrastructure. While the fundamental mechanisms that lead to greater-than-global Arctic warming are known, the mechanisms controlling the magnitude of Arctic warming are harder to constrain. This project is a focused effort on what has and will control Arctic warming from 1980 to 2060. By specifying aspects of the atmospheric conditions that are relatively well constrained (the winds), we will better understand the importance of drivers that are harder to constrain observationally (clouds and sea ice thickness). This work will lead to transformational advances in our understanding of what does and does not control Arctic warming.
This project is focused on the following research question: What is the causal influence of sea ice thickness and atmospheric opacity (i.e., clouds) on recent and near-future Arctic warming rates? This research question and associated hypotheses will be assessed in a well-established NSF-funded earth system model (Community Earth System Model, CESM) guided by observations including those from a recent year-long field campaign with substantial in situ observations (Multidisciplinary drifting Observatory for the Study of Arctic Climate, MOSAiC). The central outcome will be quantifying the causal influence of two mean state properties (atmospheric opacity, sea ice thickness) on Arctic warming rates from 1980 to 2060 using a novel ?wind-nudging? methodology that constrains the large-scale atmospheric circulation. An inquiry-based 2-week middle-high school curriculum will be developed centered around the driving question: How might weather in your area be impacted by the Arctic? The curriculum will be reviewed by experts and disseminated through virtual teacher workshops, enabling hundreds of teachers in North America to bring current Arctic research into their classrooms. The project will also actively engage early career scientists in the research including a Ph.D. student and two summer Research Experience for Undergraduates (REU) summer students.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Please report errors in award information by writing to: awardsearch@nsf.gov.