
NSF Org: |
IIS Division of Information & Intelligent Systems |
Recipient: |
|
Initial Amendment Date: | August 24, 2022 |
Latest Amendment Date: | August 24, 2022 |
Award Number: | 2221479 |
Award Instrument: | Standard Grant |
Program Manager: |
Hector Munoz-Avila
hmunoz@nsf.gov (703)292-4481 IIS Division of Information & Intelligent Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2022 |
End Date: | August 31, 2025 (Estimated) |
Total Intended Award Amount: | $729,000.00 |
Total Awarded Amount to Date: | $729,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
2601 WOLF VILLAGE WAY RALEIGH NC US 27695-0001 (919)515-2444 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
2701 Sullivan Dr STE 240 Raleigh NC US 27695-7001 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | NRI-National Robotics Initiati |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
In the U.S., there are over 41,000 registered persons who had an amputation of hand or complete arm, and approximately 10,000 new amputation cases in the upper limb each year. Prosthetic hands that can significantly improve the quality of amputees? lives are highly desired to restore many activities of daily living, particularly in hand grasping and object manipulation. However, being able to use the hand accurately remains a grand and fundamental challenge in robotic prosthetic hands, especially in the desired trait of slip prevention for reliable and stable grasping in real life environments. The challenge resides in integrating fast sensing of slip detection and rapid movement in the small-area in the fingertips to prevent slippage through the use of sensors and controls of the prosthetic hands. This project proposes to meet this challenge by exploring a new concept of a skin that can change its shape for prosthetic hands in real time. For this research project, the investigators will explore how to adjust the skin friction automatically. This project seeks to significantly advance the current state-of-the-art prosthetic hands to achieve similar functionality to human hands, as well as enhance the ability of upper limb amputees for performing activities of daily living. Through both collaborative and individual efforts of the interdisciplinary team with distributed geographical location across the country (Raleigh, Philadelphia, and Rolla), this NSF project offers a unique opportunity to integrate insights from robotics, mechanics, design, and advanced manufacturing to generate an intriguing and visually appealing broad participation plan. Through existing programs, such as senior design projects, the Society of Women Engineers, honor program, and UNC's Working on Women in Science program, the investigators will encourage underrepresented groups of undergraduate students to participate in research activities, including female and African American students. With the help of established similar summer programs and other educational programs in each institution, the investigators aim to improve the STEM education of K-12 students.
The goal of this project is to fundamentally understand the adaptive tactile interactions between the smart shape-morphing robotic skins and grasped objects for autonomous slip prevention in robotic prosthetic hands. Three thrusts will be pursued ranging from fundamental understanding of contact behaviors in smart morphing skins-objects through design, fabrication, actuation, and modeling in Thrust 1, to integrating flexible tactile and spatial sensing on the smart skins in Thrust 2, and to evaluating interactive integrated human-robotic system for preventing slip in Thrust 3. This project will examine and demonstrate the integration of multi-scale manufacturing technologies to achieve complex functional systems at the human-object interface, as well as the innovative reflex-like control of a robotic prosthesis hand. This project will generate new knowledge on the active role of actuated shape-morphing surface morphologies in tuning the friction. The translational research on upper limb amputees will provide new insight on human-prosthesis interactions and effectiveness of shared prosthesis control paradigm on amputees? motor function and cognitive load. This project will also advance the knowledge in the multidisciplinary fields of mechanics, sensing, manufacturing, robotic prosthesis controls, and human-robot interaction.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.