
NSF Org: |
CCF Division of Computing and Communication Foundations |
Recipient: |
|
Initial Amendment Date: | July 21, 2022 |
Latest Amendment Date: | August 28, 2024 |
Award Number: | 2212427 |
Award Instrument: | Continuing Grant |
Program Manager: |
Almadena Chtchelkanova
achtchel@nsf.gov (703)292-7498 CCF Division of Computing and Communication Foundations CSE Directorate for Computer and Information Science and Engineering |
Start Date: | August 1, 2022 |
End Date: | July 31, 2026 (Estimated) |
Total Intended Award Amount: | $400,000.00 |
Total Awarded Amount to Date: | $296,497.00 |
Funds Obligated to Date: |
FY 2024 = $101,135.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
4400 UNIVERSITY DR FAIRFAX VA US 22030-4422 (703)993-2295 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
4400 UNIVERSITY DR FAIRFAX VA US 22030-4422 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
Information Technology Researc, Software & Hardware Foundation |
Primary Program Source: |
01002425DB NSF RESEARCH & RELATED ACTIVIT 01002526DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Deep Neural Networks (DNNs) are achieving state-of-the-art performance on a large and expanding number of application domains. However, one of the threats to their wide-scale deployment is vulnerability to adversarial machine learning attacks, where an adversary injects small perturbations to the input data that cause the DNN to misclassify, with potentially dangerous outcomes (for example, mistaking a stop sign for a speed limit sign). In this project, the researchers will explore how building DNNs with approximate computing elements improves their robustness to these adversarial attacks. Approximate computing is a technique to build computing elements that are simpler (and therefore higher performing and more sustainable) but do not compute the exact result of an operation. The investigators will explore how to select approximate computing elements and use them in building sustainable DNN accelerators that balance performance, accuracy, and security.
The proposal's expected contributions include developing new insights into the relationship between approximation and robustness of DNNs. The project will explore what types of approximation techniques result in effective DNNs that balance accuracy, performance, sustainability, and protection against adversarial attacks and develop optimization frameworks that can find optimal operating points along these dimensions. It will also explore how to build new approximate computing elements specifically targeted toward this application. The project will use these findings to build sustainable, performant, and accurate DNN accelerators. The project will also explore other approximate computing-based techniques to protect against other types of attacks threatening the security and privacy of DNNs, as well as for different deep neural network learning structures. The project is expected to have significant impacts on security, sustainability, and accuracy of machine learning models. The research team will share all of the byproducts of the research with the research community. The project will train graduate and undergraduate students. The investigators will develop new educational material for use in machine learning, computer architecture, and computer security classes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.