
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | August 30, 2022 |
Latest Amendment Date: | July 21, 2023 |
Award Number: | 2211944 |
Award Instrument: | Standard Grant |
Program Manager: |
Alhussein Abouzeid
aabouzei@nsf.gov (703)292-7855 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | October 1, 2022 |
End Date: | September 30, 2025 (Estimated) |
Total Intended Award Amount: | $500,000.00 |
Total Awarded Amount to Date: | $550,000.00 |
Funds Obligated to Date: |
FY 2023 = $50,000.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
2200 W MAIN ST DURHAM NC US 27705-4640 (919)684-3030 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
2200 W. Main St, Suite 710 Durham NC US 27705-4010 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Networking Technology and Syst |
Primary Program Source: |
01002324DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Emerging applications in augmented reality, connected autonomous vehicles, and industrial IoT systems impose demanding requirements on next-generation mobile networks that can hardly be met alone with radio resources below 7 GHz. Therefore, 5G and beyond networks have embraced radios operating in millimeter-wave (mmWave) frequency bands, which offer 25 times or more bandwidth worldwide. On the other hand, mmWave radio networks require the dense deployment of infrastructure nodes to achieve desirable coverage, because mmWave radio signals suffer from high propagation loss and are vulnerable to blockage and mobility. Unfortunately, mmWave infrastructure nodes, e.g., gNodeB in 5G, are made of specialized, dedicated hardware and as a result, their dense deployment would incur formidable capital and operational cost. The goal of the proposed project is to reduce the cost of mmWave radio infrastructure nodes by softwarizing their radio access network (RAN) functions and serving them from data centers close to end users, i.e., edge data centers, therefore facilitating network densification. More importantly, it will allow for previously impossible flexibility in network implementation and configuration as well as efficiency in resource allocation across the network and the edge data center. At the societal level, this project will fuel the ongoing revolution of mobile network virtualization and accelerate the development and deployment of next-generation network systems.
The key insight toward addressing the challenges associated with softwarizing mmWave RANs at the edge is to exploit the massive data parallelism inside the mmWave baseband and its inherent structures, with programmable hardware in all domains. The project targets the following scientific contributions in three interrelated research thrusts. (i) A low-latency software realization of the mmWave physical layer for commodity server clusters suitable for edge deployment. (ii) Adaptive RAN configuration and in-network compression schemes that cope with the limited fronthaul capacity in practice, without substantially increasing the cost of mmWave infrastructure nodes. (iii) Novel sensing and imaging schemes based on mmWave radio signals intended for communications. These include sensing with a single mmWave infrastructure node and sensing that leverages multiple coordinated mmWave nodes to achieve previously impossible coverage and resolution.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.