Award Abstract # 2211294
Brave new whorl: Vortex ring impingement on concave surfaces

NSF Org: CBET
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Recipient: CLARKSON UNIVERSITY
Initial Amendment Date: March 18, 2022
Latest Amendment Date: March 18, 2022
Award Number: 2211294
Award Instrument: Standard Grant
Program Manager: Ron Joslin
rjoslin@nsf.gov
 (703)292-7030
CBET
 Division of Chemical, Bioengineering, Environmental, and Transport Systems
ENG
 Directorate for Engineering
Start Date: April 1, 2022
End Date: March 31, 2026 (Estimated)
Total Intended Award Amount: $309,956.00
Total Awarded Amount to Date: $309,956.00
Funds Obligated to Date: FY 2022 = $309,956.00
History of Investigator:
  • Byron Erath (Principal Investigator)
    bdeeme@rit.edu
Recipient Sponsored Research Office: Clarkson University
8 CLARKSON AVE
POTSDAM
NY  US  13676-1401
(315)268-6475
Sponsor Congressional District: 21
Primary Place of Performance: Clarkson University
8 Clarkson Avenue
Potsdam
NY  US  13676-1401
Primary Place of Performance
Congressional District:
21
Unique Entity Identifier (UEI): SL2PF6R7MRN1
Parent UEI:
NSF Program(s): FD-Fluid Dynamics
Primary Program Source: 01002223DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s):
Program Element Code(s): 144300
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.041

ABSTRACT

Vortex ring interactions with solid and deformable surfaces abound in nature and engineering flows. This situation is particularly relevant to the problem of replacement speech following a laryngectomy, where unsteady flow exiting a tracheoesophageal prosthesis produces pulsatile vortex rings that impinge on the curved wall of the esophagus. The resultant esophageal pressure field is responsible for successfully producing tracheoesophageal (i.e., replacement) speech. As such, understanding the mechanics that arise as vortex rings impact curved surfaces, in particular the pressure loading that is produced, could lead to improved success rates of replacement speech. This work is also more broadly applicable to both biological and engineering flows, such as cardiac hemodynamics, fluidic energy harvesting, wall-bounded turbulence, etc. The physics of these interactions will be investigated via flow visualization and both two-dimensional and tomographic particle image velocimetry. Acquisition of the velocity fields will enable determination of vorticity topologies, pressure field estimation, and identification of pressure source terms, as well as the resultant wall loading that arises during these interactions. This proposal blends the research efforts with a novel outreach plan to help high-school choral students envision how an interest in artistic expression in voice can lead to a career in science and engineering.

The proposed work plan will explore the mechanics of vortex ring-surface interactions with both hemispherical and cylindrical cavities. Flow visualization and particle image velocimetry will be utilized to explore how a primary vortex ring approaching a cavity induces flow on the surface of the cavity, and subsequently causes the flow to separate and roll-up into a secondary vortex ring, and potentially develop azimuthal instabilities. This interaction will be investigated in both axisymmetric (hemispherical) and two-dimensional cavity geometries as a function of cavity radius relative to the primary vortex ring radius. The pressure loading that develops on the concave surface will also be quantified to provide insight into the fluid-structure interaction. The outcomes from this research plan will improve success rates of tracheoesophageal speech. The project will also facilitate the training and education of one graduate and multiple undergraduate students. Finally, the outreach program will inspire high-school students to pursue careers in science and engineering fields, while also providing paid summer research experiences for two of them.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Ahmed, T and Erath, B D "Evolution of secondary vorticity following vortex ring impact on a concave hemicylindrical cavity" Physics of Fluids , v.36 , 2024 https://doi.org/10.1063/5.0234898 Citation Details

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page