
NSF Org: |
EAR Division Of Earth Sciences |
Recipient: |
|
Initial Amendment Date: | August 26, 2022 |
Latest Amendment Date: | August 26, 2022 |
Award Number: | 2153779 |
Award Instrument: | Standard Grant |
Program Manager: |
Justin Lawrence
jlawrenc@nsf.gov (703)292-2425 EAR Division Of Earth Sciences GEO Directorate for Geosciences |
Start Date: | September 1, 2022 |
End Date: | May 31, 2025 (Estimated) |
Total Intended Award Amount: | $155,165.00 |
Total Awarded Amount to Date: | $155,165.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
2145 N TANANA LOOP FAIRBANKS AK US 99775-0001 (907)474-7301 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
West Ridge Research Bldg 008 Fairbanks AK US 99775-7880 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Geomorphology & Land-use Dynam |
Primary Program Source: |
|
Program Reference Code(s): | |
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
Sediments are transported by rivers to global oceans where they help form coastal landforms including beaches, deltas, and marshes. The amount of sediment discharged by rivers annually has been measured for numerous rivers worldwide, but data for Arctic river sediment loads remains sparse largely due to inaccessibility during winter and the springtime ?breakup? season (when large blocks of ice fail and move downstream, typically in conjunction with high river flow). The research community is also challenged by the costs of sensors, which are too valuable to deploy in large numbers or during risky ice-covered and breakup seasons. The research will engage local Alaska Native school students in the data collection for the project and supports early career women and students.
In this project, a recently developed ?do-it-yourself? optical backscatter sensor will be leveraged in order to make improved measurements of Arctic fluvial sediment fluxes. These sensors can be built for less than 10% of the cost of commercial sensors, and in this project they will be expanded to include data logging and power that is separate from the sensor, as well as satellite-enabled data transmission. These developments will allow sensor deployments in summer, fall, and winter seasons on the Tanana River near Fairbanks, AK in order to constrain sediment concentrations in three seasons. Drone-based deployments will be conducted during spring breakup to complete the four seasons of measurements. Deployments will be complemented by surveys of river velocity and modeling of fluvial sediment transport in order to better understand annual sediment loads. The ultimate aim is to provide a tool for fluvial sediment measurements across the Arctic (and beyond).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.