
NSF Org: |
EAR Division Of Earth Sciences |
Recipient: |
|
Initial Amendment Date: | September 16, 2021 |
Latest Amendment Date: | June 27, 2022 |
Award Number: | 2152622 |
Award Instrument: | Continuing Grant |
Program Manager: |
Paul Cutler
pcutler@nsf.gov (703)292-4961 EAR Division Of Earth Sciences GEO Directorate for Geosciences |
Start Date: | August 15, 2021 |
End Date: | March 31, 2026 (Estimated) |
Total Intended Award Amount: | $1,119,530.00 |
Total Awarded Amount to Date: | $430,186.00 |
Funds Obligated to Date: |
FY 2020 = $36,870.00 FY 2022 = $224,078.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
7 LEBANON ST HANOVER NH US 03755-2170 (603)646-3007 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
NH US 03755-1421 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ANT Glaciology |
Primary Program Source: |
0100XXXXDB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050, 47.078 |
ABSTRACT
This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. Thwaites Glacier has been accelerating and widening over the past three decades. How fast Thwaites will disintegrate or how quickly it will find a new stable state have become some of the most important questions of the future of the West Antarctic Ice Sheet and its contribution to sea-level rise over the next decades to centuries and beyond. This project will rely on three independent numerical models of ice flow, coupled to an ocean circulation model to (1) improve our understanding of the interactions between the ice and the underlying bedrock, (2) analyze how sensitive the glacier is to external changes, (3) assess the processes that may lead to a collapse of Thwaites, and, most importantly, (4) forecast future ice loss of Thwaites. By providing predictions based on a suite of coupled ice-ocean models, this project will also assess the uncertainty in model projections.
The project will use three independent ice-sheet models: Ice Sheet System Model, Ua, and STREAMICE, coupled to the ocean circulation model of the MIT General Circulation Model. The team will first focus on the representation of key physical processes of calving, ice damage, and basal slipperiness that have either not been included, or are poorly represented, in previous ice-flow modelling work. The team will then quantify the relative role of different proposed external drivers of change (e.g., ocean-induced ice-shelf thinning, loss of ice-shelf pinning points) and explore the stability regime of Thwaites Glacier with the aim of identifying internal thresholds separating stable and unstable grounding-line retreat. Using inverse methodology, the project will produce new physically consistent high-resolution (300-m) data sets on ice-thicknesses from available radar measurements. Furthermore, the team will generate new remote sensing data sets on ice velocities and rates of elevation change. These will be used to constrain and validate the numerical models, and will also be valuable stand-alone data sets. This process will allow the numerical models to be constrained more tightly by data than has previously been possible. The resultant more robust model predictions of near-future impact of Thwaites Glacier on global sea levels can inform policy-relevant decision-making.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.