Award Abstract # 2145086
CAREER: Multiscale Mechanics of Bio-based, Reprocessable, Recyclable and Mechanically Robust Polymer Composites

NSF Org: CMMI
Division of Civil, Mechanical, and Manufacturing Innovation
Recipient: UNIVERSITY OF ALABAMA
Initial Amendment Date: July 29, 2022
Latest Amendment Date: July 29, 2022
Award Number: 2145086
Award Instrument: Standard Grant
Program Manager: Siddiq Qidwai
sqidwai@nsf.gov
 (703)292-2211
CMMI
 Division of Civil, Mechanical, and Manufacturing Innovation
ENG
 Directorate for Engineering
Start Date: September 1, 2022
End Date: November 30, 2022 (Estimated)
Total Intended Award Amount: $567,771.00
Total Awarded Amount to Date: $567,771.00
Funds Obligated to Date: FY 2022 = $0.00
History of Investigator:
  • Ning Zhang (Principal Investigator)
    ning_zhang@baylor.edu
Recipient Sponsored Research Office: University of Alabama Tuscaloosa
801 UNIVERSITY BLVD
TUSCALOOSA
AL  US  35401-2029
(205)348-5152
Sponsor Congressional District: 07
Primary Place of Performance: University of Alabama Tuscaloosa
801 University Blvd
Tuscaloosa
AL  US  35486-0001
Primary Place of Performance
Congressional District:
07
Unique Entity Identifier (UEI): RCNJEHZ83EV6
Parent UEI: TWJWHYEM8T63
NSF Program(s): CAREER: FACULTY EARLY CAR DEV,
Mechanics of Materials and Str
Primary Program Source: 01002223DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 013E, 024E, 027E, 1045, 9102, 9150, 9161
Program Element Code(s): 104500, 163000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.041

ABSTRACT

This Faculty Early Career Development (CAREER) grant will support fundamental research to understand complex mechanical behaviors of bio-crosslinked polymer composites. Covalently crosslinked elastomers and thermosetting polymers have been acknowledged as strategically important materials in industry, national defense and our daily life. Although the strong covalent crosslinks confer these conventional thermosets desirable properties, they also preclude repairing, reshaping, reprocessing and recycling, which has caused serious environmental pollution and resource wastage. By introducing bio-dynamic covalent bonds and adding reinforcing fillers, a novel green type of polymers that are potentially recyclable, reprocessable and sustainable has been developed. However, most of the reported bio-crosslinked polymers are still far from being extensively used in real-world applications due to the limited understanding of their processing-structure-property relationships. This research project aims to discover the fundamental principles that govern the mechanical and chemical properties of bio-based polymer composites, with the aid of multiscale computational modeling, data science (statistical analysis), and experimental validation. With quantified microstructure-property relations and unraveled deformation mechanisms, advanced bio-based reprocessable and mechanically robust polymer composites can be developed for wide applications, which will significantly mitigate the severe plastic pollution issue. The project includes an education and outreach plan to train diverse groups of next-generation of engineers: organizing workshops, seminar talks and local recycling center tours to K-12 students, providing high school students with summer internship opportunities, training undergraduate and graduate students the research skills of coding, writing and presenting. Particularly, research opportunities will be created for underrepresented students including physically disabled students.

Through developing a novel multiscale framework that integrates density functional theory (DFT), all-atom molecular dynamics (AA-MD) and coarse-grained molecular dynamics (CG-MD), the goal of this project is to establish a fundamental understanding of the role of exchangeable bio-crosslinks in assisting the polymer composites strike their excellent balance among mechanical, functional, and reprocessing properties. The research objectives include: (i) seamlessly bridging DFT, AA-MD and CG-MD by force field calibration/optimization/parameterization; (ii) understanding the fracture mechanisms of two representatives: bio-based styrene-butadiene rubber (SBR) and bio-based epoxy vitrimer. The following knowledge gaps will be addressed: (1) the mechanisms of de-crosslinking/re-crosslinking during curing; (2) the advantages of bio-crosslinks over conventional linkages (e.g., S-S, C-S bonds); (3) the interfacial interactions between nanofiller and polymer; (4) the influence of reprocessing on structure and mechanical performance of reclaimed polymers; (5) microscale and mesoscale structure-property relations. The research outcomes will advance the knowledge of mechanics in bio-based polymer composites, as well the integrated multiscale framework can be extended to other amorphous materials, such as hierarchical biomaterials.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page