Skip to feedback

Award Abstract # 2128027
IntBIO: Collaborative Research: Evolutionary and Functional Trade-offs in Extreme Sensory Capabilities of Nocturnal Predatory Spiders

NSF Org: IOS
Division Of Integrative Organismal Systems
Recipient: CORNELL UNIVERSITY
Initial Amendment Date: August 2, 2021
Latest Amendment Date: August 2, 2021
Award Number: 2128027
Award Instrument: Standard Grant
Program Manager: Joanna Shisler
jshisler@nsf.gov
 (703)292-5368
IOS
 Division Of Integrative Organismal Systems
BIO
 Directorate for Biological Sciences
Start Date: August 1, 2021
End Date: July 31, 2025 (Estimated)
Total Intended Award Amount: $725,171.00
Total Awarded Amount to Date: $725,171.00
Funds Obligated to Date: FY 2021 = $725,171.00
History of Investigator:
  • Ronald Hoy (Principal Investigator)
    rrh3@cornell.edu
  • H. Kern Reeve (Co-Principal Investigator)
Recipient Sponsored Research Office: Cornell University
341 PINE TREE RD
ITHACA
NY  US  14850-2820
(607)255-5014
Sponsor Congressional District: 19
Primary Place of Performance: Cornell University
373 Pine Tree Road
Ithaca
NY  US  14850-2820
Primary Place of Performance
Congressional District:
19
Unique Entity Identifier (UEI): G56PUALJ3KT5
Parent UEI:
NSF Program(s): Cross-BIO Activities
Primary Program Source: 01002122DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 068Z
Program Element Code(s): 727500
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.074

ABSTRACT

If there is one thing everyone ?knows? about spiders, it?s that they are deadly hunters of insects, which they catch with webs spun of super-strong silk. Studying spiders can provide numerous engineering insights by examining the specialized sensory systems and ingenious uses of webs and silk they use for detecting and capturing prey. This project focuses on net-casting deinopid spiders that hunt by striking at moving insects that they ensnare in small rectangular webs held with their legs. This study will examine the large eyes of deinopid spiders, eyes that are used at night to hunt. The project is expected to produce results with practical applications. For example, the biochemical and physiological design features of their eyes are expected to reveal new insights that could be applied for night motion-sensitive devices. In addition, the remarkable physical properties of spider silk--namely, its tensile strength, toughness, and flexibility--are currently being exploited by industry for consumer, industrial, and military applications. This project will also have educational impacts by providing research opportunities for under-represented high school and undergraduate students and by developing an interactive bilingual game in English and Spanish to help teach children mathematics through modeling. These activities will broaden participation in science and help train the next generation of the scientific workforce.

This project will address complex questions requiring an integrative approach: How do sensory systems become specialized and what are the mechanisms behind these specializations? Net-casting spiders (Deinopidae) present an exciting model given their highly specialized sensory systems used to capture prey in near-total darkness. Net-casting spiders rely on enlarged eyes that are among the most light-sensitive on Earth. Yet some select species have diminutive eyes but forage under similar conditions. A recent discovery revealed that spiders use acoustic information transmitted through silk to perceive their environment and capture aerial prey. This suggests that trade-offs between sensory systems are a driver of adaptive variation. Functional trade-offs are inherent to all sensory systems, but the understanding of how these trade-offs manifest and evolve is limited and has not been studied in detail in a comparative fashion across multiple biological levels. Achieving this deep understanding of trade-offs requires integrative approaches and a diverse team of investigators willing to bridge the considerable gaps between their subdisciplines. This research will forge connections among investigators with complementary expertise in disparate biological fields. Together, they will identify the genetic, physiological, morphological, and behavioral mechanisms underlying the extraordinary visual and acoustic sensory adaptations within deinopids and elucidate how relative investments evolve in different ecological conditions. Results from the multidisciplinary empirical experiments will be integrated into an ecological and evolutionary model to generate predictions about sensory evolution that will be applicable to other biological systems. Cross-training of early career investigators will also strengthen the pipeline for integrative biology for generations.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page