
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | April 26, 2021 |
Latest Amendment Date: | April 26, 2021 |
Award Number: | 2105416 |
Award Instrument: | Standard Grant |
Program Manager: |
Alhussein Abouzeid
aabouzei@nsf.gov (703)292-7855 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | July 1, 2021 |
End Date: | July 31, 2023 (Estimated) |
Total Intended Award Amount: | $174,999.00 |
Total Awarded Amount to Date: | $174,999.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
6000 J ST STE 3700 SACRAMENTO CA US 95819-2605 (916)278-6402 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
6000 J Street Sacramento CA US 95819-6000 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Networking Technology and Syst |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
With the proliferation of wireless networks and mobile devices, wireless Internet of Things (IoT) applications (e.g., location-based services) have gained considerable attention. Indoor localization faces a number of challenges in the radio propagation environment, including the multipath effect, shadowing, fading, and delay distortion. To tackle the non-line-of-sight (NLOS) indoor environment, fingerprinting based wireless localization methods using deep neural networks (DNN) have been proposed. However, a data-driven only approach using DNN may perform poorly in adversarial IoT environments (e.g., wireless jamming). Specifically, DNN models are shown to be vulnerable to adversarial examples generated by introducing a subtle perturbation. Thus, the primary aim of the proposed research is to develop robust solutions for wireless localization in adversarial IoT environments, which fills in the gap between wireless localization accuracy and robustness. Particularly, we consider adversarial machine learning for wireless localization in IoT environments. The successful completion of this project will significantly improve the state-of-the-art of wireless localization and enable robust IoT applications. The project's educational plan includes developing a new graduate-level course on deep learning for wireless IoT systems and enhancing various core undergraduate and graduate-level courses. Also, the project strives to broaden participation from under-represented groups in research and will continue to greatly strengthen such efforts throughout the project years.
The project research agenda is composed of two closely integrated research thrusts. In Thrust I, this project will use adversarial deep learning for indoor localization in a way that leverages adversarial training in the offline stage to improve the robustness of the deep network, thus alleviating the threat of the adversarial example attacks on wireless data. This project will consider two wireless localization tasks: adversarial examples for wireless localization in black-box attacks and unsupervised learning for adversarial examples detection. In Thrust II, this project will combine deep learning and Gaussian processes for uncertain location estimation, to improve robustness for wireless localization algorithms. Specifically, this project will exploit uncertainty location estimation with deep Gaussian process against both white-box and black-box attacks. Also, this project will model and analyze the fundamental limits and robustness of wireless localization. For all the proposed tasks in the two thrusts, this project will develop mathematical models and solution algorithms. The proposed algorithms will be implemented with wireless IoT devices/platforms (e.g., Wi-Fi, RFID, and LoRa), and validated with extensive experiments in representative indoor environments.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.