Award Abstract # 2048810
Collaborative Research: Establishing an Iron Resonance Wind-Temperature Lidar at High-Frequency Active Auroral Research Program (HAARP) for Active Studies of Polar Aeronomy

NSF Org: AGS
Division of Atmospheric and Geospace Sciences
Recipient: GLOBAL ATMOSPHERIC TECHNOLOGIES AND SCIENCES, INC.
Initial Amendment Date: March 31, 2021
Latest Amendment Date: April 7, 2023
Award Number: 2048810
Award Instrument: Continuing Grant
Program Manager: Shikha Raizada
sraizada@nsf.gov
 (703)292-8963
AGS
 Division of Atmospheric and Geospace Sciences
GEO
 Directorate for Geosciences
Start Date: April 1, 2021
End Date: March 31, 2026 (Estimated)
Total Intended Award Amount: $112,694.00
Total Awarded Amount to Date: $112,694.00
Funds Obligated to Date: FY 2021 = $66,311.00
FY 2023 = $46,383.00
History of Investigator:
  • Bifford Williams (Principal Investigator)
    b.p.williams@gats-inc.com
Recipient Sponsored Research Office: GLOBAL ATMOSPHERIC TECHNOLOGIES AND SCIENCES, INC.
11828 CANON BLVD STE D
NEWPORT NEWS
VA  US  23606-2554
(757)873-5920
Sponsor Congressional District: 03
Primary Place of Performance: G & A Technical Software, Inc.
3360 Mitchell Lane
Boulder
CO  US  80301-2776
Primary Place of Performance
Congressional District:
02
Unique Entity Identifier (UEI): FNZFG585K6U3
Parent UEI:
NSF Program(s): AERONOMY
Primary Program Source: 01002122DB NSF RESEARCH & RELATED ACTIVIT
01002223DB NSF RESEARCH & RELATED ACTIVIT

01002324DB NSF RESEARCH & RELATED ACTIVIT

01002122DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s):
Program Element Code(s): 152100
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.050

ABSTRACT

The award supports a collaborative effort between researchers at the University of Alaska Fairbanks (UAF), Cornell University, G & A Technical Software Incorporated (GATS), the University of Colorado Denver (CU Denver), Virginia Polytechnic Institute and State University (VTech), and the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt, DLR) to build a state-of-the-art solid-state iron resonance wind and temperature lidar system (IRWTL) and to operate this instrument at the high-frequency active auroral research program (HAARP) facility located in Gakona, Alaska (62°N, 145°W). This instrument will be used to conduct a series of coordinated observations with the Ionospheric Research Instrument (IRI) at HAARP that will be operated in campaign mode centering upon three major heating experiments. The Arctic atmosphere and the subauroral region are a natural laboratory for understanding plasma-neutral and dynamical coupling in the atmosphere and geospace. The lidar will measure the profile of the ion-neutral collision frequency needed for the determination of D-region electron density profiles from IRI HF radar data. A second application of coordinated IRWTL and IRI measurements is aimed at the investigation of the charge transfer mechanisms in dusty plasmas based on lidar observations of polar mesospheric clouds and radar observations of polar mesospheric summer echoes. These coordinated measurements will also study the dynamical forcing of E-region winds using the technique of radar artificial periodic irregularities. The combined IRWTL and IRI observations will be used to study D-region structure as determined from the data collected from the detection of ELF/VLF waves generated by the IRI facility. These studies will have a variety of broader impacts including the study of fundamental processes in plasma physics, aerosols, fluid dynamics while advancing radio science and remote sensing technology and techniques. The award will support research training and professional development of graduate students and two postdoctoral associates. The IRWTL will support the participation of both UAF undergraduate students and visiting students in scientific investigations and engineering projects. This effort fosters collaboration between three universities, an aerospace company, and a national space center.

The IRWTL lidar system will enhance the HAARP research infrastructure as a state-of-the-art solid state resonance lidar system using a frequency-stabilized Nd:YAG laser to achieve atmospheric illumination at the iron resonance emission wavelength at 372 nm. During geomagnetically active periods the auroral electrojet and auroral precipitation occur overhead at the HAARP site facilitating HF heating experiments to higher altitude ranges than otherwise would be the case. The IRWTL observations will yield new wind and temperature measurements in the mesosphere-lower thermosphere in both daytime and nighttime throughout the year; these results would be compared with similar wind and temperature observations obtained at the Poker Flat sodium resonance wind and temperature lidar system located in central Alaska to search for evidence of large scale structure in polar mesospheric winds. The observations, analyses and results of this activity will contribute to national and international programs, including CEDAR and SCOSTEP programs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page