Award Abstract # 2048481
Collaborative Research: Redefining the footprint of deep ocean methane seepage for benthic ecosystems

NSF Org: OCE
Division Of Ocean Sciences
Recipient: OCCIDENTAL COLLEGE
Initial Amendment Date: February 25, 2021
Latest Amendment Date: June 26, 2023
Award Number: 2048481
Award Instrument: Continuing Grant
Program Manager: Cynthia Suchman
csuchman@nsf.gov
 (703)292-2092
OCE
 Division Of Ocean Sciences
GEO
 Directorate for Geosciences
Start Date: October 1, 2021
End Date: September 30, 2025 (Estimated)
Total Intended Award Amount: $128,827.00
Total Awarded Amount to Date: $128,827.00
Funds Obligated to Date: FY 2021 = $44,342.00
FY 2022 = $43,601.00

FY 2023 = $40,884.00
History of Investigator:
  • Shana Goffredi (Principal Investigator)
    sgoffredi@oxy.edu
Recipient Sponsored Research Office: Occidental College
1600 CAMPUS RD
LOS ANGELES
CA  US  90041-3314
(323)259-1414
Sponsor Congressional District: 34
Primary Place of Performance: Occidental College
CA  US  90041-3314
Primary Place of Performance
Congressional District:
34
Unique Entity Identifier (UEI): DCQQX5TRCYN9
Parent UEI:
NSF Program(s): BIOLOGICAL OCEANOGRAPHY
Primary Program Source: 01002122DB NSF RESEARCH & RELATED ACTIVIT
01002223DB NSF RESEARCH & RELATED ACTIVIT

01002324DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 1097, 1319, 1389, 8811, 9117
Program Element Code(s): 165000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.050

ABSTRACT

This research examines the role of deep-sea organisms in determining the fate and footprint of methane, a potent greenhouse gas, on Pacific continental margins. The investigators are evaluating the deep ocean methanosphere defined by the microbial communities that consume methane and the animals that directly feed on or form symbioses with methane-consuming microbes. They are also investigating animal communities that gain energy indirectly from methane, as well as those that take advantage of carbonate rocks, the physical manifestation of methane consumption in seafloor sediments. The study of methane seeps in the deep waters of both Alaska (4400-5500 meters) and Southern California (450-1040 meters) is enabling comparisons of the methanosphere under different food-limitation and oxygen regimes. By applying diverse chemical, isotopic, microscopy, and genetic-based analyses to seep microbes and fauna, this study is advancing understanding of the contribution of methane to deep-sea biodiversity and ecosystem function, information that can inform management and conservation actions in US waters. In addition to training for graduate and undergraduate students at their home institutions, the investigators are collaborating with the Alaska Native Science and Engineering Program (ANSEP). They are recruiting Alaskan undergraduates to participate in the research, contributing to ANSEP?s online resources that promote interaction between scientists and middle and high school students, and participating in ANSEP?s annual residential Career Exploration in Marine Science programs to engage middle school students in learning about deep-sea ecosystems and the variety of career pathways available in marine related fields.

Microbial production and consumption of methane is dynamic and widespread along continental margins, and some animals within deep-sea methane seeps rely on the oxidation and sequestration of methane for nutrition. At the same time, understanding of methane-dependent processes and symbioses in the deep-sea environment is still rudimentary. The goals of this study are to 1) examine the diversity of animals involved in methane-based symbioses and heterotrophic consumption of methane-oxidizing microbes and how these symbioses extend the periphery of seeps, contributing to non-seep, continental slope food webs; and 2) determine whether carbonates on the seep periphery sustain active methanotrophic microbial assemblages, providing a localized food source or chemical fuel for thiotrophic symbioses, via anaerobic oxidation of methane, or free-living, sulfide-oxidizing bacteria consumed by animals. The investigators are addressing these goals by surveying, sampling, and characterizing microbes, water, sediments, carbonates and animals at a deep seep site on the Aleutian Margin and a shallow site off Southern California. Shipboard experiments and laboratory analyses are using molecular, isotopic, geochemical, and radiotracer tools to understand transfer of methane-sourced carbon from aerobic methanotrophs under multiple oxygen levels, pressures, and photosynthetic food inputs. This approach offers a wide lens by which to examine the methane seep footprint, allow reinterpretation of past observations, and identify new scientific areas for future study. Improved characterization of the deep continental margin methanosphere informs climate science, biodiversity conservation, and resource management.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page