Skip to feedback

Award Abstract # 2034230
Collaborative Research:SitS: Integrating Novel Greenhouse Gas Sensor Technology with Mechanistic Modeling to Improve Projections of Arctic Soil Responses to Climate Change and Fire

NSF Org: CHE
Division Of Chemistry
Recipient: OAKLAND UNIVERSITY
Initial Amendment Date: August 25, 2020
Latest Amendment Date: October 14, 2020
Award Number: 2034230
Award Instrument: Standard Grant
Program Manager: Samy El-Shall
selshall@nsf.gov
 (703)292-7416
CHE
 Division Of Chemistry
MPS
 Directorate for Mathematical and Physical Sciences
Start Date: January 1, 2021
End Date: December 31, 2025 (Estimated)
Total Intended Award Amount: $388,403.00
Total Awarded Amount to Date: $388,403.00
Funds Obligated to Date: FY 2020 = $388,403.00
History of Investigator:
  • Xiangqun Zeng (Principal Investigator)
    zeng@oakland.edu
Recipient Sponsored Research Office: Oakland University
2200 N SQUIRREL RD
ROCHESTER
MI  US  48309-4401
(248)370-4116
Sponsor Congressional District: 11
Primary Place of Performance: OAKLAND UNIVERSITY
2200 Squirrel Road
Rochester
MI  US  48309-4479
Primary Place of Performance
Congressional District:
11
Unique Entity Identifier (UEI): HJTLACN81NK1
Parent UEI: LY1HEB9XS5G8
NSF Program(s): NNA-Navigating the New Arctic,
PROJECTS
Primary Program Source: 01002021DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 072Z, 090Z, 1079, 1639, 8028
Program Element Code(s): 104Y00, 197800
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.049

ABSTRACT

This award was made through the "Signals in the Soil (SitS)" solicitation, a collaborative partnership between the National Science Foundation and the United States Department of Agriculture National Institute of Food and Agriculture (USDA NIFA). Co-funding for this award is being provided by the Environmental Chemical Sciences (ECS) program in the Division of Chemistry, and the Navigating the New Arctic (NNA) program, one of NSF?s ten Big Ideas. NNA supports projects that address convergence scientific challenges in the rapidly changing Arctic, empower new research partnerships, diversify the next generation of Arctic researchers, enhance efforts in formal and informal education, and integrate the co-production of knowledge where appropriate. This award aligns with the mission of the ECS program and the goals of the NNA program.

The Arctic contains the largest amount of stored carbon of any habitat type. It is also the most rapidly warming global region. Warming temperatures, along with increasing fire frequency and extent, may amplify global climate change by increasing carbon-based greenhouse gas (GHG) emissions from Arctic soils. Current abilities to predict future arctic carbon storage and release dynamics remain limited due, in part, to a lack of on-site soil GHG sensors that can operate over Arctic winters. To advance knowledge of the processes regulating arctic soil carbon storage and release, this collaboration between California Polytechnic State University, Oakland University, Wayne State University, and the Woods Hole Research center will develop GHG sensors that are refined to operate under variable soil conditions. The chemical measurements from these sensors will be integrated with a model that captures the biological interactions that govern carbon and nutrient cycling in arctic tundra systems. This cross- disciplinary collaboration will advance soil sensor technology, generate novel arctic system data, and improve models of how the Arctic is responding to fire and warming. The proposed project will be incorporated into teaching activities and through integration with the Polaris Project, an NSF-supported arctic undergraduate research program that prioritizes recruitment of students from underrepresented groups.

Fundamental soil science challenges include the need to develop GHG sensors that can continuously operate below freezing temperatures within soil profiles and the improvement of next-generation mechanistic biogeochemical models to project soil processes which vary in space and time. The primary objective of this research is to advance understanding of the processes regulating the sequestration and release of carbon and nitrogen from arctic soils by integrating fine-scale GHG measurements generated by novel, low-disturbance, and low-power in situ GHG sensors that can operate continuously under variable soil conditions with the Stoichiometrically Coupled, Acclimating Microbe-Plant-Soil (SCAMPS) model. This research, which integrates sensor development with established biogeochemical data collection and mechanistic modeling, will help to improve understanding of how arctic terrestrial heterogeneity across fine spatial and temporal scales affects the timing, magnitude, and form of carbon exchanged between permafrost- dominated soils and the atmosphere under rapidly changing climate conditions and extreme events. The in situ soil sensors will be among the first multimodal gas sensors that can function continuously at arctic soil temperatures, providing multiple GHG measurements with high sensitivity and specificity at low cost and low power. These soil sensors can ultimately be distributed in various ecosystems to study the dynamic changes occurring in the Arctic and other critical soil environments. This research will advance understanding of carbon and nutrient cycling in the Arctic by refining and validating novel multimodal sensors deployed to continuously measure soil GHG production at multiple depths across low Arctic field sites with varying wildfire histories. In addition to breakthroughs for arctic research, this project will generate technological innovations that will advance scientific understanding in the sensor research community and drive technology toward the long-term goal of monitoring the signals in the soil.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page