Award Abstract # 2020378
GCR: Collaborative Research: The Convergent Impact of Marine Viruses, Minerals, and Microscale Physics on Phytoplankton Carbon Sequestration

NSF Org: OCE
Division Of Ocean Sciences
Recipient: UNIVERSITY SYSTEM OF NEW HAMPSHIRE
Initial Amendment Date: August 22, 2020
Latest Amendment Date: September 15, 2022
Award Number: 2020378
Award Instrument: Continuing Grant
Program Manager: Cynthia Suchman
csuchman@nsf.gov
 (703)292-2092
OCE
 Division Of Ocean Sciences
GEO
 Directorate for Geosciences
Start Date: October 1, 2020
End Date: September 30, 2025 (Estimated)
Total Intended Award Amount: $346,725.00
Total Awarded Amount to Date: $346,725.00
Funds Obligated to Date: FY 2020 = $104,556.00
FY 2022 = $242,169.00
History of Investigator:
  • Elizabeth Harvey (Principal Investigator)
    elizabeth.harvey@unh.edu
Recipient Sponsored Research Office: University of New Hampshire
51 COLLEGE RD
DURHAM
NH  US  03824-2620
(603)862-2172
Sponsor Congressional District: 01
Primary Place of Performance: University of New Hampshire
38 Academic Way
Durham
NH  US  03824-3585
Primary Place of Performance
Congressional District:
01
Unique Entity Identifier (UEI): GBNGC495XA67
Parent UEI:
NSF Program(s): GCR-Growing Convergence Resear
Primary Program Source: 01002021DB NSF RESEARCH & RELATED ACTIVIT
01002223DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s):
Program Element Code(s): 062Y00
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.050, 47.083

ABSTRACT

A convergent team of experts in biology, chemistry, physics, engineering, mathematics, and computational modeling examine how dynamic and coupled phytoplankton-pathogen-particle-predator linkages coalesce to explain the observed high spatial variability in the efficiency of the export of particulate organic carbon (POC) to the deep ocean. They elucidate and quantify the linkages between viruses and ballast minerals to increase understanding of carbon cycling in the oceanic biological carbon pump and the impact of viruses within it. By providing knowledge than can be used to improve the parameterization of carbon export in Earth system models, the project will help reduce uncertainty in regional marine biogeochemical projections, potentially improving marine ecosystem and fisheries management on timescales from seasons to decades. The project includes activities that provide teaching resources and hands-on training to educators within a ?Tools of Science? program that provides a simple and succinct way to communicate the process of scientific research to students in a way that is useful to teachers.

The project couples laboratory-based experiments on model host-virus-grazer systems with extensive field based observational and manipulative studies on natural populations of diatoms and coccolithophores, the two phytoplankton groups that account for most of the estimated particulate organic matter flux to the deep ocean. Experiments and measurements integrate diagnostic biological and chemical controls on infection and particle coagulation theory with microscale physics and grazing to quantify links to each hypothesized export mechanism under field-relevant turbulent conditions. Cutting-edge engineering and analytical tools are used to diagnose and track infection dynamics while characterizing and quantifying particle aggregation and disaggregation, mineral dissolution, sinking dynamics, grazing rates, and fecal pellet production at unprecedented resolution and under well-defined, microscale physical regimes. Field campaigns elucidate the relative efficiency of hypothesized mechanisms in stimulating POC export in natural blooms, while providing bulk and size-resolved estimates of POC flux.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page