
NSF Org: |
RISE Integrative and Collaborative Education and Research (ICER) |
Recipient: |
|
Initial Amendment Date: | August 27, 2019 |
Latest Amendment Date: | July 24, 2023 |
Award Number: | 1928146 |
Award Instrument: | Standard Grant |
Program Manager: |
Roberto Delgado
robdelga@nsf.gov (703)292-2397 RISE Integrative and Collaborative Education and Research (ICER) GEO Directorate for Geosciences |
Start Date: | September 1, 2019 |
End Date: | August 31, 2025 (Estimated) |
Total Intended Award Amount: | $2,849,500.00 |
Total Awarded Amount to Date: | $2,986,095.00 |
Funds Obligated to Date: |
FY 2023 = $136,595.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
615 W 131ST ST NEW YORK NY US 10027-7922 (212)854-6851 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
61 Route 9W Palisades NY US 10964-8000 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
NNA-Navigating the New Arctic, GOALI-Grnt Opp Acad Lia wIndus, ARCSS-Arctic System Science |
Primary Program Source: |
01001920DB NSF RESEARCH & RELATED ACTIVIT 0100XXXXDB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041, 47.050 |
ABSTRACT
Navigating the New Arctic (NNA) is one of NSF's 10 Big Ideas. NNA projects address convergence scientific challenges in the rapidly changing Arctic. The Arctic research is needed to inform the economy, security and resilience of the Nation, the larger region and the globe. NNA empowers new research partnerships from local to international scales, diversifies the next generation of Arctic researchers, and integrates the co-production of knowledge. This award fulfills part of that aim.
As ice melts around the world, sea level is projected to rise in many places and fall in others. Because Greenland is very close to the changing ice, it is anticipated that the land will rise, and that sea level will fall, impacting both humans, marine life, and natural resources. Community responses to changing sea level depend on accurate, location-specific knowledge of the present-day coastal environment and how it is predicted to change. Given the economic, mining, natural resources, and infrastructure development occurring in the Arctic, there is an urgent need to better understand and communicate the present and future sea level around the island. This joint US-Greenlandic investigator team has identified four key local communities with different infrastructure that are likely to experience differential future coastal environments. By focusing on these four communities, the investigators can develop better models of changes to both land and sea level changes and can map the shallow water environments to determine which habitats and coastal transportation routes may change. Together these new predictions of sea level change and mapping of seafloor habitats can improve the capacity of local communities to respond to change. This integrated approach serves as a template for developing a strategy for communities to respond to the changing ice in the Arctic and around the globe.
Sea level changes throughout the Arctic are the combined response of solid Earth uplift or subsidence, oceanic circulation, and gravity field variations driven by changes in glaciers and ice sheets. Due to the adjacent ice sheet, the signals of shallow water change in Greenland may be large, as shown by the NSF-supported Greenland GPS Network (GNET), which has documented uplift rates up to 23 mm/year and subsidence rates of 5 mm/year in the southwest. The goal of this project is to bring together a convergence research team focusing on the integration of the natural, social, and built environments of four different Arctic communities proximal to a changing ice sheet. This focus permits the: (i) use state of the art technologies to map shallow water environment and habitats; (ii) development of data-informed models and projections of how sea level has responded to changing ice in the past, present and future; and (iii) partnering with local communities in both needed data collection to improve the sea level models and the baseline bathymetric mapping to identify hot spots for future change where new infrastructure, fisheries, and other marine use may be susceptible to change.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.