Skip to feedback

Award Abstract # 1830256
NRI: INT: COLLAB: Anthropomorphic Robotic Ankle Prosthesis with Programmable Materials

NSF Org: IIS
Division of Information & Intelligent Systems
Recipient: ARIZONA STATE UNIVERSITY
Initial Amendment Date: August 17, 2018
Latest Amendment Date: July 8, 2019
Award Number: 1830256
Award Instrument: Standard Grant
Program Manager: Wendy Nilsen
wnilsen@nsf.gov
 (703)292-2568
IIS
 Division of Information & Intelligent Systems
CSE
 Directorate for Computer and Information Science and Engineering
Start Date: September 1, 2018
End Date: April 30, 2020 (Estimated)
Total Intended Award Amount: $800,000.00
Total Awarded Amount to Date: $800,000.00
Funds Obligated to Date: FY 2018 = $58,435.00
History of Investigator:
  • Panagiotis Artemiadis (Principal Investigator)
    partem@udel.edu
  • Panagiotis Polygerinos (Former Principal Investigator)
  • Panagiotis Artemiadis (Former Co-Principal Investigator)
Recipient Sponsored Research Office: Arizona State University
660 S MILL AVENUE STE 204
TEMPE
AZ  US  85281-3670
(480)965-5479
Sponsor Congressional District: 04
Primary Place of Performance: Arizona State University
Tempe
AZ  US  85281-6011
Primary Place of Performance
Congressional District:
04
Unique Entity Identifier (UEI): NTLHJXM55KZ6
Parent UEI:
NSF Program(s): NRI-National Robotics Initiati
Primary Program Source: 01001819DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 063Z, 8086
Program Element Code(s): 801300
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.070

ABSTRACT

There are currently 2 million Americans living with an amputation; the majority of those amputations are of the lower limbs. Leg amputation is a significant life-altering event that has an overwhelmingly negative effect on many aspects of life, even years after the injury. Leg amputation can cost in excess of $1.8 million per individual. Most available prostheses are designed to replicate some aspects of normal ankle function during level-ground walking. These prostheses allow many individuals with below-knee amputation to return to basic daily activities. However, these devices are best suited for level-ground walking and many users experience difficulties during other important tasks, such as walking on slopes, stairs, or different terrains. Therefore, the general aim of this project is to address this gap in the design of existing powered ankle-foot prostheses by enabling new prosthetics that adapt to different environmental conditions commonly found in daily life. The proposed ankle-foot mechanism significantly enhances the customizability of lower leg-powered prostheses by introducing a new design approach. This project will study how the human ankle stiffness changes during different walking scenarios. The research team will use this information to design a powered ankle-foot prosthesis with properties more similar to the human ankle. In order to do so, a lightweight and modular prosthesis that uses programmable material will be developed. The modular mechanical design and control approach generates human-like characteristics and enables a larger set of users with different lengths of amputated legs to use this prosthesis. Moreover, the prosthesis' performance will be evaluated during real-world activities in dynamic environments. The focus of this project is on amputees' well-being. The resulting agile ankle foot prosthesis will help amputees improve their physical function, ability to work, and recreation, thus helping individuals return to the activities and quality of life they had prior to injury. The research findings from this project can also be applied to advance functions of exoskeletons, orthotics, and rehabilitation robots. In addition to advancing research, undergraduate and graduate students will be involved in research activities and will receive interdisciplinary education/innovation/outreach experiences. Outreach activities will allow the project team to engage diverse middle and high school students in science and engineering, especially those from underrepresented groups and low-income families.

This project plans a new class of customizable agile ankle-foot prosthesis that is modular in design and has its impedance modulation decoupled from its torque control. This will be achieved by equipping a novel and recently developed powered 2-degrees of freedom (DOF) ankle-foot prosthesis with an augmented mechanism built from soft programmable material. The primary outcomes of this project will be a comprehensive understanding of how to 1) reduce the complexity of the control of ankle-foot prostheses, as observed in clinical trials, and 2) enhance prosthesis performance in real-world activities, such as walking and running on surfaces with different profiles, stiffness, and lateral inclinations. The planned work aims to address customizability issues of robotic ankle foot prostheses and address societal impact by improving amputees' quality of life and work. The main goal of this study is to consolidate the impedance control of the ankle to a mechanical module comprised of programmable material to follow the 2-D human ankle impedance. The effort will further integrate the impedance modulation with 2-DOF torque control of the ankle to provide the customizability required for tailoring an agile prosthesis to each user's need in parallel to the torque control tuning. The project researchers hypothesize that real-time control of the two-dimensional ankle impedance in a robotic ankle-foot prosthesis can improve the performance and the agility of the user during walking on surfaces with different profiles, stiffness, and inclinations. The interconnected research thrusts will provide the opportunity to offer a new solution through 1) modeling the ankle dynamics in different gait scenarios, 2) equipping a 2-DOF robotic ankle-foot prosthesis with a programmable material module, and 3) performing extensive evaluation experiments with amputees. Understanding the effect of the control and adaptation of the 2-D ankle impedance during walking with a lower extremity prosthesis will be significantly beneficial for the field of assistive robotics because it can provide guidelines for the design and control of powered prostheses, exoskeletons, and rehabilitation devices. In addition to advancing research, undergraduate and graduate students will be involved in research activities and will receive interdisciplinary education/innovation/outreach experiences. Outreach activities will allow the project team to engage diverse middle and high school students, especially those from underrepresented groups and low-income families. The findings from this project will be disseminated through publications, software sharing, and technology commercialization.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Yumbla, Emiliano Quinones and Obeng, Ruby Afriyie and Ward, Jeffrey and Sugar, Thomas and Artemiadis, Panagiotis "Anticipatory muscle responses in transitions from rigid to compliant surfaces: towards smart ankle-foot prostheses" IEEE International Conference on Rehabilitation Robotics , 2019 10.1109/ICORR.2019.8779403 Citation Details

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page