
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | July 3, 2018 |
Latest Amendment Date: | July 3, 2018 |
Award Number: | 1823366 |
Award Instrument: | Standard Grant |
Program Manager: |
Sankar Basu
sabasu@nsf.gov (703)292-7843 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | August 1, 2018 |
End Date: | July 31, 2022 (Estimated) |
Total Intended Award Amount: | $1,500,000.00 |
Total Awarded Amount to Date: | $1,500,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
9500 GILMAN DR LA JOLLA CA US 92093-0021 (858)534-4896 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
9500 Gilman Dr. La Jolla CA US 92093-0412 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | CCRI-CISE Cmnty Rsrch Infrstrc |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Neuromorphic cognitive computing aims at learning to solve complex cognitive tasks by emulating the principles and physical organization of highly efficient and resilient adaptive information processing in the biological brain. Despite over 30 years of development and a recent surge of broad interest across all Science, Technology, Engineering and Mathematics (STEM) disciplines, access to neuromorphic cognitive computing remains mostly limited to a small community of highly trained researchers in the field due to high entry barriers and costs associated with the specialized nature and complex operation of currently available systems. This project will construct and support a general-purpose neuromorphic cognitive computing platform that will be the largest and most versatile realized to date as well as the first to be broadly available and open to the research community at large, for research into new forms of brain-inspired computing that are more effective and more efficient in approaching the cognitive capabilities of the human mind. Targeting wide adoption by a diverse cross-section of users in the broader STEM research community, the platform will feature a natural user interface that shields novice users from the challenges arising in operating and configuring highly specialized neuromorphic hardware, by providing a set of user-friendly software tools maintained by and shared with the user community. Building on extensive existing network and storage infrastructure for user access and data sharing at the San Diego Supercomputer Center, the platform will be hosted and maintained through the Neuroscience Gateway (NSG) Portal, which currently serves over 600 active users in the scientific community.
The large-scale neuromorphic platform will serve as a new and unparalleled resource to the Computer and Information Science and Engineering (CISE) research community, addressing a great need for an experimental testbed for research in alternative forms of computing beyond the traditional von Neumann paradigm and the impending physical limits to Moore's Law expansion in the scaling of computing technology. The reconfigurable platform will feature a hierarchically interconnected network of in-memory computing processing nodes that emulates, in real-time, highly flexible neural dynamics (integrate-and-fire, graded, stochastic binary, etc) of up to 128 million neurons with high flexible connectivity and plasticity (spike-timing dependent plasticity, gradient-based deep learning, etc) of up to 32 billion synapses. The system will be capable of biophysical detail in computational neuroscience modeling, as well as high performance and efficiency in on-line adaptive pattern recognition, serving and bringing together both computational neuroscience and computational intelligence communities that have traditionally pursued disparate computational approaches. The user interface of the platform will support software tools and resources for deep learning and run-time optimization in artificial intelligence applications, and for interference of structure and functional connectivity from recorded neural activity in computational neuroscience research, among others. To facilitate greatest scientific and societal impact, the infrastructure will be made available free of charge, on a time-managed shared basis, to any researcher in return for agreeing to share source code and data necessary to replicate results reported in the literature.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
This Computer and Information Science and Engineering (CISE) Community Research Infrastructure (CRI) project aimed at constructing and supporting a general-purpose neuromorphic cognitive computing platform for research into new forms of brain-inspired computing that are more effective and more efficient in approaching the cognitive capabilities of the human mind. This neuromorphic computing platform serves as the largest and most versatile realized to date as well as the first to be broadly available and open to the research community at large, targeting wide adoption by a diverse cross-section of users in the broader STEM research community. To this end the platform features a natural user interface that shields novice users from the challenges arising in operating and configuring highly specialized neuromorphic hardware, by providing a set of user-friendly software tools maintained by and shared with the user community. Building on extensive existing network and storage infrastructure for user access and data sharing at the San Diego Supercomputer Center, the platform is hosted and maintained through the Neuroscience Gateway (NSG) Portal, which serves over 1,100 registered users in the scientific community.
Outcomes of this development effort delivered a large-scale neuromorphic platform serving as a new and unparalleled resource to the CISE research community, addressing a great need for an experimental testbed for research in alternative forms of computing beyond the traditional von Neumann paradigm and the impending physical limits to Moore's Law expansion in the scaling of computing technology. Furthermore the platform is uniquely versatile in that it combines biophysical detail in computational neuroscience modeling, with high performance and efficiency in on-line adaptive pattern recognition, bringing together both computational neuroscience and computational intelligence communities that have traditionally pursued disparate computational approaches.
Last Modified: 04/11/2023
Modified by: Gert Cauwenberghs
Please report errors in award information by writing to: awardsearch@nsf.gov.