
NSF Org: |
EAR Division Of Earth Sciences |
Recipient: |
|
Initial Amendment Date: | August 14, 2018 |
Latest Amendment Date: | August 14, 2018 |
Award Number: | 1812525 |
Award Instrument: | Standard Grant |
Program Manager: |
Richard Yuretich
ryuretic@nsf.gov (703)292-4744 EAR Division Of Earth Sciences GEO Directorate for Geosciences |
Start Date: | August 15, 2018 |
End Date: | July 31, 2023 (Estimated) |
Total Intended Award Amount: | $203,536.00 |
Total Awarded Amount to Date: | $203,536.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
845 N PARK AVE RM 538 TUCSON AZ US 85721 (520)626-6000 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
AZ US 85719-4824 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | INTEGRATED EARTH SYSTEMS |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
The geologic record of past environmental change offers an illuminating glimpse into the behavior of Earth's natural systems. The deposits formed in ancient lakes are particularly useful in this regard for several reasons: they are highly sensitive to climate change; they often contain relatively complete geologic archives with relatively few gaps; and they can potentially be used to document changes that occurred over time scales meaningful to humans. The Green River Formation in the western U.S. offers an especially valuable record of the most geologically recent period of prolonged greenhouse conditions, which occurred approximately 50-53 million years ago during the Eocene Epoch. It is famous for its rich assemblages of fossil vertebrates, insects, and plants, and for containing the world's largest commercial deposits of soda ash and oil shale. This research project will focus on evidence for repeated rapid warming events during this time, by examining how river courses changed, the types of sediment that accumulated within the lake, and variations in ancient soil development and chemistry. Equally important, this study will build a time scale of unprecedented accuracy and precision for these important deposits, based on new radiometric dates of volcanic ash in the lake, the chronology of changes in the Earth's magnetic field, and sedimentation patterns that were driven by periodic oscillations in the Earth's rotation and orbit. Broader impacts of this proposal will include development of local 2-hour field trips for middle and high school students, enhanced through the use of innovative data visualization technology on portable devices.
The Early Eocene Climatic Optimum (EECO) was a time of persistent global warmth, of which the cause remains incompletely determined. Lake deposits of the Green River Formation preserve a rich and previously untapped record that complements that contained in marine sediments, and present an opportunity to advance the precision and accuracy of the Early Eocene timescale. This project is an integrated, multidisciplinary investigation focused on one of the world's richest and best studied systems of ancient lake strata. The research will investigate three principal questions: 1. How did the timing of terrestrial warming compare to that inferred from the marine record, and to predicted patterns of the Earth's orbital variations? Recent advances in radioisotopic dating can be used to directly test the relationship of warming events to Earth's orbital changes, and calibrate dynamic gravitational models of the solar system back to ca. 50 million years. 2. How did temperatures, seasonality, hydrologic cycling, and weathering on land evolve during the EECO? One hypothesis is that warming was amplified on continents relative to the oceans and was accompanied by more equable temperatures year-round, whereas precipitation seasonality and intensity increased. 3. How did the complex tectonic and magmatic evolution of western North America impact the preservation of EECO climate signals? The research will test the hypothesis that repeated, stepwise drainage reorganizations within the tectonically-active uplands modified the hydrologic balance and sedimentary deposits of the Eocene lake environment and its response to orbital changes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
This project sought to understand how rainfall patterns behaved in the western United States during the early Eocene period, 50 million years ago. During this time, the climate was much warmer than today, so the study of this interval can inform how the hydrological cycle might respond to future warming. We analyzed molecular fossils in sediments from the Green River Formation in Wyoming, representing an ancient lake called Lake Gosiute. Using isotopes of hydrogen measured on these leaf waxes, we were able to reconstruct hydroclimate on an orbital (thousands of years) timescale. We found large changes in the water cycle paced by Earth's orbital cycles, namely precession and eccentricity. The presence of these cycles suggests that changes in hydroclimate in the western US area were dominated by shifts in summer precipitation during the Eocene, which then influence the annual mean rainfall. In addition, hydroclimate changes may have been amplified by periodic rises in carbon dioxide associated with the carbon cycle of the warm Eocene. The results of this study include the first terrestrial, orbitally-resolved record of climate from the warm Eocene period and provide an explanation of how and why the orbital cycle of eccentricity influences hydroclimate in the absence of large ice sheets on planet Earth.
Last Modified: 12/20/2023
Modified by: Jessica E Tierney
Please report errors in award information by writing to: awardsearch@nsf.gov.