
NSF Org: |
OPP Office of Polar Programs (OPP) |
Recipient: |
|
Initial Amendment Date: | September 5, 2018 |
Latest Amendment Date: | December 30, 2024 |
Award Number: | 1805569 |
Award Instrument: | Standard Grant |
Program Manager: |
Colleen Strawhacker
colstraw@nsf.gov (703)292-7432 OPP Office of Polar Programs (OPP) GEO Directorate for Geosciences |
Start Date: | October 1, 2018 |
End Date: | September 30, 2025 (Estimated) |
Total Intended Award Amount: | $1,673,672.00 |
Total Awarded Amount to Date: | $1,711,232.00 |
Funds Obligated to Date: |
FY 2023 = $37,560.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
3100 MARINE ST Boulder CO US 80309-0001 (303)492-6221 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
325 Broadway St. Boulder CO US 80305-3337 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
SPECIAL EMPHASIS PROGRAM, ARCSS-Arctic System Science |
Primary Program Source: |
0100CYXXDB NSF RESEARCH & RELATED ACTIVIT 0100XXXXDB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050, 47.078 |
ABSTRACT
This study will use an emerging technology, unmanned aircraft systems, to collect measurements with the goal of improving weather and climate models of the Arctic system. It is part of the international MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) program, an extensive field effort to freeze an icebreaker into sea ice for an entire year to serve as a research platform for a comprehensive study of the atmosphere, ocean and ice system in the high Arctic. The unique and potentially transformative aspect of this project is that unmanned aircraft collect data at small spatial and temporal scales, providing new information about variability in temperature, humidity, and winds. In addition, direct measurements of these variables over breaks in the sea ice have been very limited to date. Therefore, this study will address a significant source of error in our current ability to forecast how energy is transferred between the atmosphere and underlying ice and sea surface. Together with information from collaborating scientists participating in the MOSAiC field effort, the investigators will evaluate a series of hypotheses related to the performance of model simulations of key processes over the central Arctic Ocean. The investigators will also give pubic lectures at schools and other venues, capitalizing on interest and excitement in use of new technology though use of videos and photos of the unmanned aircraft systems. They will support training for early career scientists by involving graduate students and postdoctoral scientists.
The investigators will deploy an unmanned aircraft system to measure atmospheric temperature, winds, and humidity, as well as surface albedo. Flights will take place from mid-winter (February) through late summer (August) to capture variable conditions in both the atmosphere and sea ice surface and will include routine profiling of the lower atmosphere, spatial mapping of thermodynamic quantities and surface albedo, and mapping of the lower atmospheric structure over leads. This data will be evaluated with measurements of the atmosphere, ocean and ice collected by other scientists as part of the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) project to address hypotheses related to the performance of modeling tools in simulating key processes over the central Arctic Ocean. These include questions about sub-grid scale variability of atmospheric and surface parameters and its influence on model-simulated surface energy budget; the influence of leads in the sea ice on energy transfer from the ocean to the atmosphere and how models represent this transfer; and the importance of vertical resolution in simulation of the Arctic atmosphere and its impact on the simulation of clouds and the surface energy budget. The investigators will compare observations from unmanned aerial systems to a variety of simulations, ranging from global products to fully-coupled regional simulations completed using the Regional Arctic System Model (RASM) to detailed single-column and 2D modeling at high resolution.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.