
NSF Org: |
IIS Division of Information & Intelligent Systems |
Recipient: |
|
Initial Amendment Date: | August 17, 2017 |
Latest Amendment Date: | August 17, 2017 |
Award Number: | 1717972 |
Award Instrument: | Standard Grant |
Program Manager: |
Ephraim Glinert
IIS Division of Information & Intelligent Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2017 |
End Date: | February 29, 2020 (Estimated) |
Total Intended Award Amount: | $432,707.00 |
Total Awarded Amount to Date: | $432,707.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
1 UNIVERSITY OF NEW MEXICO ALBUQUERQUE NM US 87131-0001 (505)277-4186 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
Albuquerque NM US 87131-0001 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | HCC-Human-Centered Computing |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Using a digital computer to accurately simulate soft objects that deform under external interactions is a fundamental problem in a wide range of scientific and engineering fields. For example, without being able to deliver a faithful force-displacement response, virtual surgical training is hardly effective and provides users with misleading experiences. In the past decade, the number of simulation degrees of freedom (DOFs) for deformable models has increased from hundreds to hundreds-of-thousands and even millions. Computing hardware that has become more and more powerful has contributed significantly to this development, but unfortunately it is unlikely that in the future computer simulation will continue to benefit dramatically from increased processor frequency. Indeed, in the last few years the chip industry has already moved the emphasis from a faster processor clock to multi-core architectures. On the other hand, with the widespread adoption of advanced acquisition devices/techniques, the complexity and scale of the data that can be handled by computers have grown exponentially, and large-scale geometries are becoming ubiquitous in modern 3D data processing. This new era of data explosion imposes unprecedented challenges on deformable simulation. Existing methods typically use one-stop solvers that calculate all the unknown DOFs of a system, but that is computationally intensive due to the underlying high-dimensional numerical integration. Even with state-of-the-art hardware, deformable simulation can still take hours, days, or even weeks for massive scenarios.
Clearly, conventional simulation methodologies fail to well accommodate distributed computing resource allocation, and become more and more cumbersome with bigger and bigger datasets. This calls for rebranded algorithmic frameworks and dedicated numerical procedures for large-scale geometrically-complex and nonlinear deformable models that empower next-generation graphics applications. Motivated by these grand challenges, this project systematically investigates a collection of theoretical advancements, computational techniques, and numerical implementations that push the frontier of large-scale nonlinear deformable models to "post Moore's law." Specifically, the intellectual merit of the research will comprise the following aspects:
o The project will devise a theoretically grounded domain decomposition based parallel deformable simulator. By weakening inter-domain linkages, the domain-level computations become independent and parallelizable. The coupling mechanism will be generalized and enriched so that non-conforming and overlapping domain decompositions are made possible. This includes an in-depth optimization of the domain tessellation under specified hardware configurations. Simulation reusability will be further enhanced through a novel technique called cellular domains.
o The project will deepen the current understanding of large-scale model reduction and re-forge this useful tool in the context of parallel computing. In particular, how to utilize power iteration to obtain the spectral analysis will be explored. Furthermore, geometry-based reduction directly dictates reduced DOFs and has a more robust simulation even under imposed extreme constraints.
o A well-argued computational theory is less practicable unless encapsulated by a set of carefully engineered implementations. Accordingly, the project will also design customized numerical procedures paired with proposed algorithmic techniques, and the entire simulation framework will be fine-tuned at the system level, solver level, and sub-solver level by leveraging unique data patterns, numerical behaviors, and problem structures of domain decomposed deformable models.
o As a testbed platform, the project will develop a novel real-time human tongue motion visualization system. Over 8% of U.S. children have a communication or swallowing disorder. Built upon the new deformation solver, an ultrasound-imaging-driven real-time human tongue visualization system will be developed to assist doctors and speech therapists to better understand the pathological mechanism behind this disease and plan more effective subject-specific medical/physical treatments.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.