
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | July 21, 2016 |
Latest Amendment Date: | July 21, 2016 |
Award Number: | 1643207 |
Award Instrument: | Standard Grant |
Program Manager: |
Phillip Regalia
pregalia@nsf.gov (703)292-2981 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | September 1, 2016 |
End Date: | December 31, 2017 (Estimated) |
Total Intended Award Amount: | $125,000.00 |
Total Awarded Amount to Date: | $125,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
520 LEE ENTRANCE STE 211 AMHERST NY US 14228-2577 (716)645-2634 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
White Rd Buffalo NY US 14260-2500 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
Networking Technology and Syst, Secure &Trustworthy Cyberspace |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
Advances in privacy-enhancing technologies, including cryptographic mechanisms, standardized security protocols, and infrastructure, significantly improved privacy and had a significant impact on society by protecting users. At the same time, the success of such infrastructure has attracted abuse from illegal activities, including sophisticated botnets and ransomware, and has become a marketplace for drugs and contraband; botnets rose to be a major tool for cybercrime and their developers proved to be highly resourceful. It is contended that the next waves of botnets will extensively attempt to subvert privacy infrastructure and cryptographic mechanisms, which has the potential of both undermining their legal basis and future performance.
This project will develop the theoretical and experimental foundations for analyzing, monitoring and mitigating the next generation of botnets that subvert privacy-enhancing technologies. Towards that goal, the project will develop tools for: 1) Analytical framework: the project develops a concrete strategy for approaching the detection, characterization, and mitigation of abuse of privacy infrastructure by crystallizing an analytical framework for reasoning about such botnets. This includes the identification
and formalization of their key properties (e.g., traceback and tomography resiliency, stealthy monetization), enabling mechanisms (e.g., IP address de-coupling, control/data traffic indistinguishability), fundamental limitations, and evaluation metrics. The project will explore analogous scenarios of abuse in future Internet architectures where anonymity is facilitated by design. 2) Monitoring and analysis: the project develops an experimental framework to track activities of the next generation of botnets for scalable and effective mitigation. Such framework will exploit their ideal design and behavioral properties, and draws on various preliminary measurement results in related contexts. 3) Mitigation: The project has the ultimate
goal of proactively developing an arsenal of mitigation techniques grounded in a sound theoretical foundation, analyzed within the theoretical framework, and evaluated within the experimental framework. The mitigation techniques span the gamut of increasing the cost of operating such botnets, to actively containing
and neutralizing bots, to proposing modifications to the privacy-enhancing protocols. The results of this project will be communicated with the concerned communities for having a direct and immediate impact on existing and future privacy infrastructure. The project will also develop educational material to train students in the foundations and systems for enabling privacy enhancing technologies.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.