
NSF Org: |
RISE Integrative and Collaborative Education and Research (ICER) |
Recipient: |
|
Initial Amendment Date: | August 4, 2015 |
Latest Amendment Date: | May 25, 2016 |
Award Number: | 1541620 |
Award Instrument: | Standard Grant |
Program Manager: |
Eva Zanzerkia
RISE Integrative and Collaborative Education and Research (ICER) GEO Directorate for Geosciences |
Start Date: | September 1, 2015 |
End Date: | August 31, 2018 (Estimated) |
Total Intended Award Amount: | $44,472.00 |
Total Awarded Amount to Date: | $44,472.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
3100 MARINE ST Boulder CO US 80309-0001 (303)492-6221 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
3100 Marine Street, Room 479 Boulder CO US 80303-1058 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | EarthCube |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
One of the major current challenges with polar cyberinfrastructure is managing and fully exploiting the
volume of high-resolution commercial imagery now being collected over the polar regions. This data can be used to understand the changes in polar regions due to climate change and other processes. The potential of global socio-economic costs of these impacts make it an urgent priority to better understand polar systems. Understanding the mechanisms that underlie polar climate change and the links between polar and global climate systems requires a combination of field data, high-resolution observations from satellites, airborne imagery, and computer model outputs. Computational approaches have the potential to support faster and more fine-grained integration and analysis of these and other data types, thus increasing the efficiency of analyzing and understanding the complex processes. This project will support advances in computing tools and techniques that will enable the Polar Sciences Community to address significant challenges, both in the short and long-term.
The impact of this project will be in the improvements in the ability to utilize advanced cyberinfrastructure and high-performance distributed computing to fundamentally alter the scale, sophistication and scope of polar science problems that will be addressed. This project will not implement those changes but will identify and lay the groundwork for such impact across the Polar Sciences. The Project personnel will identify primary barriers to the uptake of high-performance and distributed computing and will help alleviate them through a combination of community based solutions and training. The project will also produce a roadmap detailing a credible and effective way to meet the long-term computing challenges faced by the Polar Science community and possible plans to effectively address them. This project will establish mechanisms for community engagement which include, gathering technical requirements for polar cyberinfrastructure and supporting and training early career scientists and graduate students.
Please report errors in award information by writing to: awardsearch@nsf.gov.