
NSF Org: |
EAR Division Of Earth Sciences |
Recipient: |
|
Initial Amendment Date: | August 21, 2014 |
Latest Amendment Date: | August 31, 2016 |
Award Number: | 1411368 |
Award Instrument: | Continuing Grant |
Program Manager: |
Jonathan G Wynn
jwynn@nsf.gov (703)292-4725 EAR Division Of Earth Sciences GEO Directorate for Geosciences |
Start Date: | September 1, 2014 |
End Date: | August 31, 2018 (Estimated) |
Total Intended Award Amount: | $767,135.00 |
Total Awarded Amount to Date: | $767,135.00 |
Funds Obligated to Date: |
FY 2015 = $269,407.00 FY 2016 = $229,386.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
1850 RESEARCH PARK DR STE 300 DAVIS CA US 95618-6153 (530)754-7700 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
One Shields Ave Davis CA US 95616-5270 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | INTEGRATED EARTH SYSTEMS |
Primary Program Source: |
01001516DB NSF RESEARCH & RELATED ACTIVIT 01001617DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): | |
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
This project involves basic research of controls on nitrogen (N) weathering rates from bedrock across an array of terrestrial ecosystems and conditions ? spanning molecular techniques to global scale modeling. This study is motivated by the need to understand how biogeochemical cycles shape integrated Earth systems and has key implications for the pace and magnitude of climate change in the face of rising fossil fuel CO2 emissions. Bedrock lithologies house >99% of all reactive N compounds (i.e., all N forms other than N2 gas) on the planet; yet, the biogeochemical importance of this vast N reservoir has been overlooked. Textbook paradigms hold that new N enters ecosystems solely from the atmosphere via biochemical fixation or as N in deposition. However, these N input pathways are incapable of explaining the high rates of N accumulation observed for many terrestrial ecosystems, constituting a major unknown in the global N budget.
As an alternative, the principal investigators suggest that the geosphere plays a major role in terrestrial N biogeochemistry ? imparting large effects on terrestrial carbon (C) cycling and climate change. They propose research to test the hypothesis that rocks of sedimentary origin represent a broadly significant source of N to the terrestrial biosphere. The research team includes geologists, biologists, pedologists, biogeochemists, and Earth system scientists. They will examine bedrock N weathering at molecular-, soil pedon-, watershed-, regional-, and global-scales. The proposed combination of state-of-the-art tools, involving lab, field, and modeling components, is novel. The molecular-scale research is focused on geobiology; it emphasizes ?rock-eating-fungi? effects on N weathering reactions, using controlled laboratory experiments and NanoSIMS (Nanometer-scale Secondary Ion Mass Spectrometry) across field sites. The soil pedon, watershed and regional analyses will estimate physical and chemical weathering of nitrogen across an array of lithologies, tectonic conditions, and climates. Linkages between weathering rates and the terrestrial nitrogen cycle will be empirically investigated regionally through measures of natural nitrogen stable isotopes, and carbon, nitrogen, and phosphorus chemistry. The global analyses will emphasize a new modeling scheme that couples a global biogeochemical model with a weathering model to scale the amount of rock-derived nitrogen that is available to store terrestrial carbon worldwide.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
Nitrogen is one of the most important resources for people, ecosystems and the planet. It’s found in all sorts of essential molecules, including DNA, protein and cell walls. Life - and humanity - cannot exist without adequate access to this precious nutrient.
For many years, researchers believed that essentially all of the nitrogen in the world’s natural plants and soils originated from the atmosphere, where it makes up about 78 percent of the air we breathe. But this NSF funded study revealed that rocks are also an important source of nitrogen in terrestrial ecosystems, increasing the amount of new nitrogen by ~11 to 26 percent beyond what was previously thought. This finding has implications for understanding how much carbon plants and soils can store; the more nitrogen available to ecosystems, the more ecosystems can absorb atmospheric carbon dioxide emissions. Overall, this rresearch suggests that natural ecosystems are more capable of storing carbon than previously assumed, however, not at a level that will substantially reduce the amount of carbon dioxide in the air.
Several products from this award include:
-Several research publications, including in the premier peer-reviewed journal Science
-Three graduate student theses, and support of numerous undergraduates and high-school students
-Thousands of rock, soil and plant samples analyzed for chemical composition
-New modeling approaches to understanding the Earth as an interactive system
-International collaboration and coordinating of world-research activities
Last Modified: 01/28/2019
Modified by: Benjamin Z Houlton
Please report errors in award information by writing to: awardsearch@nsf.gov.