
NSF Org: |
DMR Division Of Materials Research |
Recipient: |
|
Initial Amendment Date: | July 12, 2014 |
Latest Amendment Date: | July 12, 2014 |
Award Number: | 1410169 |
Award Instrument: | Standard Grant |
Program Manager: |
Birgit Schwenzer
bschwenz@nsf.gov (703)292-4771 DMR Division Of Materials Research MPS Directorate for Mathematical and Physical Sciences |
Start Date: | August 15, 2014 |
End Date: | July 31, 2017 (Estimated) |
Total Intended Award Amount: | $495,000.00 |
Total Awarded Amount to Date: | $495,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
633 CLARK ST EVANSTON IL US 60208-0001 (312)503-7955 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
2145 Sheridan Road Evanston IL US 60208-3113 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | SOLID STATE & MATERIALS CHEMIS |
Primary Program Source: |
|
Program Reference Code(s): | |
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
Non-technical Summary
New materials impact not only the physical sciences but also economic growth. At a grassroots level, the solid state and materials chemistry community recognizes the grand challenge of developing rational materials discovery strategies and identifying materials that are transformative in our understanding of physicochemical properties and in technological progress. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, this project help address this challenge by developing the chemistry of metal chalcogenides. In this context, the research team is building a rational, science-driven foundation to extract maximum scientific and technological benefit. The primary goals of this projecct are to discover and characterize new types of metal chalcogenide compounds, and to understand their structures, chemical bonding and physical properties. If successful, new materials enabling new applications or enhancing the effectiveness of existing technological applications will emerge. The project employs molten salts as powerful reaction media in which to seek formation of new materials with unusual physical properties. The project contributes significantly to the training and teaching of graduate students in the field of solid state and materials chemistry and helps to create a future workforce that understands the importance of new materials as drivers for new phenomena and technologies.
Technical Summary
The primary goals of this research are to discover and characterize new types of metal chalcogenide compounds, and to understand their structures, chemical bonding and physical properties. The project employs salt flux syntheses to seek new materials with novel structure and compositions. Well-defined building blocks are present in the flux reactions and their formation is guided by tuning the flux composition and temperature, which controls Lewis basicity and redox potential. An important question in this synthesis program is whether, using intermediate temperatures, one can guide the fundamental reaction chemistry occurring in molten salts to suppress the formation of undesirable compounds and favor crystallization of new ones. The project is based on the general theme of structure-composition-property relationships with the following question being central: How does one develop the tools and concepts, both intellectual and experimental, to discover new functional materials. Focusing on the chalcogenide class the project has the following directions: (a) synthesis in polychalcogenide fluxes focusing on early transition and main group metals, mixed metal systems and also on thio and telluro-arsenate and antimonate chemistry; (b) synthesis using mixed chalcogenide fluxes incorporating oxide salts; (c) creation of novel glasses from the crystalline compounds and their phase change behavior and (d) dissolution studies of selected promising chalcogenide phases to assess their potential for processing into more useful forms. The project is expected to enrich the knowledge of unusual and diverse chalcometallate building blocks and role they play in creating new compounds. Experimental characterization tools to be employed include X-ray crystallography optical, infrared and Raman spectroscopy, scanning and transmission electron microscopy, differential thermal analysis and scanning calorimetry, and measurements of electrical conductivity as well as optical second harmonic generation.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
In this project we have made several exciting discoveries of a fundamental nature regarding materials with exceptional properties and high performance in several technological areas with high potential impact in applications. We have reported new metal sulfide, selenide and telluride materials with very strong nonlinear optical activity, semiconductor properties, as well as materials with promising radiation detector properties and materials useful for environmental remediation. We also discovered novel materials with excellent ion-exchange properties and unprecedented structures. Our research strategy was based on the premise that exploratory syntheses conducted at lower or medium temperatures (e.g. 200-600 degrees) were more likely to lead to new phases with complex compositions and structures. The strategy also resolved also revolved around the ability to characterize our new compounds in a broad variety of physical methods and chemical techniques to ensure that remarkable and unanticipated properties are found and properly understood. The results obtained during the duration of this project point to new scientific insights and exciting research directions to pursue in the future. Some of the new materials discovered may find technological applications. Furthermore, the scholarly activities associated with this grant contributed significantly to the advanced research training, education and career development of human resources. The project produced 25 published peer-reviewed papers.
Last Modified: 08/24/2017
Modified by: Mercouri G Kanatzidis
Please report errors in award information by writing to: awardsearch@nsf.gov.