Award Abstract # 1133993
Collaborative Research: Large-scale kinetic energy entrainment in the wind turbine array boundary layer - understanding and affecting basic flow physics

NSF Org: CBET
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Recipient: RENSSELAER POLYTECHNIC INSTITUTE
Initial Amendment Date: August 1, 2011
Latest Amendment Date: August 1, 2011
Award Number: 1133993
Award Instrument: Standard Grant
Program Manager: Geoffrey Prentice
CBET
 Division of Chemical, Bioengineering, Environmental, and Transport Systems
ENG
 Directorate for Engineering
Start Date: January 1, 2012
End Date: October 31, 2011 (Estimated)
Total Intended Award Amount: $197,154.00
Total Awarded Amount to Date: $197,154.00
Funds Obligated to Date: FY 2011 = $0.00
History of Investigator:
  • Luciano Castillo (Principal Investigator)
    Lcastillo@purdue.edu
Recipient Sponsored Research Office: Rensselaer Polytechnic Institute
110 8TH ST
TROY
NY  US  12180-3590
(518)276-6000
Sponsor Congressional District: 20
Primary Place of Performance: Rensselaer Polytechnic Institute
NY  US  12180-3522
Primary Place of Performance
Congressional District:
20
Unique Entity Identifier (UEI): U5WBFKEBLMX3
Parent UEI:
NSF Program(s): EchemS-Electrochemical Systems
Primary Program Source: 01001112DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 147E
Program Element Code(s): 764400
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.041

ABSTRACT

1133800 PI Meneveau/1133993 PI Castillo

The objective of this project is to develop and apply experimental and computational tools for predicting and improving wind farm performance by placing particular attention on large scales of turbulence and vertical fluxes of kinetic energy that are of great significance for large arrays of wind turbines. Much effort has been devoted in recent years to increasing the efficiency of individual wind turbines, assuming a given inflow in front of the turbine. Also, understanding how wakes affect the performance of downstream turbines and modeling superpositions of multiple such wakes has received considerable attention; however, there has been relatively little fundamental understanding of how a large array of wind turbines interacts with the turbulent atmospheric boundary layer at larger scales in the wind turbine array boundary layer (WTABL). Recent research has demonstrated that an important performance-limiting factor for large wind farms is the rate at which kinetic energy can be entrained into the array from the flow aloft, above the wind turbines. No matter how efficient an individual wind turbine is, or how well it can adapt to an upstream wind-turbine, ultimately it is the vertical flux of kinetic energy into the overall array that largely determines how much power can be extracted from the atmospheric flow. The questions addressed in this project aim at better understanding the limiting factors and the effiects of different scales of turbulence on vertical entrainment processes. The resulting models should guide wind turbine placement strategies and possible flow modifications so that vertical entrainment rates can be increased. Specifically, wind tunnel experiments coupled with large-eddy simulations (LES) will be employed to address the following research questions: (a) What are the essential differences between the developing and the fully developed WTABL? (b) What is the relative contribution from streamwise large-scale coherent vortices to vertical entrainment of kinetic energy? (c) What are the space-time correlations of hub-height velocity and power output between different wind turbines in the array? (d) Are there particular arrangements of wind turbines in the array that increase, on average, the entrainment? and (e) Can large-scale flow structures be affected through rotor modifications to increase such entrainment? Addressing such questions requires the ability to experiment under the highly controlled and reproducible conditions that can be afforded in the proposed wind tunnel experiments and computer simulations. The data will be supplemented with comparisons with relevant new field data from a large wind farm.

Broader impacts: The robust growth of wind energy implies the possibility that non-negligible portions of the
land and near-shore surface of the US and the world may ultimately be used for large wind farms. Predicting
and better understanding the physical processes coupling the modified surface and atmosphere under such
conditions is a timely and critical area of research. through project activities the PIs will help train the next generation of engineers and scientists with the necessary tools and insights to help reach the US goal of 20% wind energy by 2030. Graduate education/mentoring will stress the interplay between wind tunnel experimentation, computer simulation and field data analysis. International (Switzerland, Spain) and industrial experiences (General Electric) will also be emphasized in this project. Recruiting and outreach will leverage both PIs? ongoing efforts to recruit US Hispanic graduate students through contacts in Puerto Rico (NSF-AGEP and LSAMP), as well as an IGERT at JHU on modeling complex systems. A GK-12 at RPI on energy and environment will leverage NSF resources in training teachers on wind energy issues. The PI?s ongoing outreach to a Baltimore high-school will be continued, providing research experiences for high-school juniors and seniors.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page