
NSF Org: |
OPP Office of Polar Programs (OPP) |
Recipient: |
|
Initial Amendment Date: | February 3, 2011 |
Latest Amendment Date: | February 3, 2011 |
Award Number: | 1118473 |
Award Instrument: | Standard Grant |
Program Manager: |
William J. Wiseman, Jr.
OPP Office of Polar Programs (OPP) GEO Directorate for Geosciences |
Start Date: | February 1, 2011 |
End Date: | August 31, 2013 (Estimated) |
Total Intended Award Amount: | $135,548.00 |
Total Awarded Amount to Date: | $135,548.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
77 MASSACHUSETTS AVE CAMBRIDGE MA US 02139-4301 (617)253-1000 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
77 MASSACHUSETTS AVE CAMBRIDGE MA US 02139-4301 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
PHYSICAL OCEANOGRAPHY, ANS-Arctic Natural Sciences |
Primary Program Source: |
0100XXXXDB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.078 |
ABSTRACT
Funds are provided to produce an eddy-permitting Arctic and sub-polar North
Atlantic state estimate (ASTE) for climate research, using basic tools developed within the Estimating the Circulation and Climate of the Ocean (ECCO) consortium. The coupled ocean/sea-ice general circulation model (MITgcm) will be constrained by as many ocean and sea-ice observations as available and practical. The target period is from 1992 to present. The fit will be achieved through minimization of a least-squares misfit function (adjoint or Lagrange Multiplier method). The coupled ocean/sea-ice adjoint model has been generated by means of automatic differentiation (AD). A similar effort has been successfully accomplished with the production of the Southern Ocean State Estimate (SOSE). The domain of the ASTE covers the Atlantic northward of 26 N and the entire Arctic, with the exception of the Pacific sector southward of Bering Strait (66 N). The horizontal resolution is 7 to 12 km with 50 vertical levels. The control space comprises the initial conditions of the coupled ocean/sea-ice state, the time-varying surface atmospheric state, time-varying open boundary conditions, and spatially varying model parameters.
The observational backbone used initially for the ocean consists of: sea surface height from satellite altimetry, daily satellite SST, mean geoid and time-varying bottom pressure from satellite gravity and moorings, Argo float profiles, hydrographic data from WOCE and PHC, available mooring arrays such as Line-W and RAPID/MOCHA, and current meters available via AON/CADIS, PANGEAE (ASOF), and NSIDC (SCICEX). Sea-ice satellite observations used initially will comprise: daily ice concentration, ice drift velocities from passive microwave radiometry, scatterometry, and SAR imagery. In-situ under-ice data will include ice-tethered profilers, ice mass balance buoys, ice draft from submarine-borne upward looking sonar, as well as various buoy and mooring data from the IABP and AON/CADIS archives. Extension to other data sources includes tests of satellite retrievals of ice thickness or freeboard data from combined radar and laser altimetry.
Their approach offers strict dynamical consistency of the computed state estimate over the entire integration period, enabling exact time-varying budget calculations relevant for climate studies, such as the assessment of circulation shifts and their associated lateral heat and freshwater changes on seasonal and longer time scales. In this sense, the product differs significantly from what in the atmospheric context are called ?re-analysis? products. Another novelty of the product is its combined treatment of the Arctic and the subpolar gyre, and the synthesis of all available data types. Initial science foci will be on the connection between deep water formation processes and the Atlantic meridional overturning, the freshwater input at high latitudes and its pathways, and the interaction between Atlantic Water, Arctic halocline formation, and sea-ice.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
Introduction
The Arctic and sub-polar ocean is home to several distinct processes and phenomena of importance to the global climate system. We have developed a regional eddy-permitting Arctic/subpolar gyre State Estimate (ASTE) using gradient-based optimization methods that are well developed in the computational science community, and that have been successfully applied for global-scale ocean climate state estimation by the Estimating the Circulation and Climate of the Ocean (ECCO) consortium. The approach is, fundamentally, a least-squares fit of allavailable observations to a coupled ocean/sea-ice model by means of the adjoint method (Heimbach and Wunsch 2012; Wunsch and Heimbach 2013b). The underlying model used is the MIT general circulation model (MITgcm). The fit of the model to the observations is achieved through variation of a number of control variables, such as initial conditions; time-mean parameter fields; and atmospheric forcing fields.
Accomplishments
1. The project has contributed to the production of a global 1992-2011 state estimate on a new-generation global LLC90 grid. The grid includes the Arctic and provides a natural 3:1 nesting with the higher-resolution LLC270 grid. By way of example, Fig. 1 depicts the time-mean misfit between in-situ potential temperature observations and the state estimate at three depth levels for a non-optimized (a) and optimized (b) solution.
2. Fenty et al. (2013a,b) conducted studies of mass and enthalpy budgets and associated ocean-ice-atmosphere fluxes during wintertime sea ice quasi-equilibrium state in the Labrador Sea and Baffin Bay, a critical region of the North Atlantic subpolar gyre,, and analyzed what sets the maximum sea ice quasi-equilibrium extent (Fig. 2).
3. Nguyen et al. (2011,2012) inferred sources, pathways, and seasonal development of Upper Halocline Waters in the Western Arctic ocean from Pacific water intrusions via Bering Strait, and studied the implications for heat advection through the Chukchi Sea and Canada Basin.
4.. The potential use of first-year (FY) versus multi-year (MY) ice area retrievals from QuikSCAT as data constraints in ASTE requires an approach to simulate sea ice age and its classification according to FY and MY ice (Fig. 3, top panels). Such an algorithm has recently been incorporated into the MITgcm (Rampal et al., unpublished). Fig. 3 (bottom) shows apparent trends in satellite-retrieved (black line) and simulated (blue line) MY sea ice area fraction changes between 2000 and 2009.
5. A related study investigated the cause of IPCC AR4 models to underestimate thinning rates of sea ice thickness over the last three decades. To this end kinematic properties were intercompared, and compared with to SCICEX and ICESat thickness data as well as IABP buoy drift data. The causes of the model deficiency were identified to be a too weak feedback between the sea ice state and its kinematic properties.
6. With the provision of open boundary conditions to ASTE from the global solution, an understanding of basic transport properties becomes a priority. An initial such analysis was performed by Wunsch and Heimbach (2013a) for the Atlantic meridional overturning circulation (AMOC) covering the period. At 26N, where the RAPID/MOCHA array exists, the AMOC exhibits large month-to-month variability (Fig. 4, black curves), as pointed out by Wunsch and Heimbach (2006). The transport estimates have been contributed to the NOAA State of the Climate Report 2012 (Baringer et al., 2013). Note that in contrast to RAPID, the ASTE estimates enable a wide range of Atlantic basin scale analyses (Heimbach et al., 2011). They reach back to 1992, showing no discernible tre...
Please report errors in award information by writing to: awardsearch@nsf.gov.