
NSF Org: |
EAR Division Of Earth Sciences |
Recipient: |
|
Initial Amendment Date: | July 26, 2010 |
Latest Amendment Date: | July 26, 2010 |
Award Number: | 1024559 |
Award Instrument: | Standard Grant |
Program Manager: |
Enriqueta Barrera
EAR Division Of Earth Sciences GEO Directorate for Geosciences |
Start Date: | September 1, 2010 |
End Date: | August 31, 2013 (Estimated) |
Total Intended Award Amount: | $39,682.00 |
Total Awarded Amount to Date: | $39,682.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
201 OLD MAIN UNIVERSITY PARK PA US 16802-1503 (814)865-1372 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
201 OLD MAIN UNIVERSITY PARK PA US 16802-1503 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Geobiology & Low-Temp Geochem |
Primary Program Source: |
|
Program Reference Code(s): | |
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
Intellectual merit: N2 fixation is effected exclusively by bacteria and archea using the enzyme nitrogenase, which contains Fe and Mo as metal cofactors in its most active form, and Fe and V, or Fe-only in its alternative forms. The aim of this project is to elucidate how the mechanisms and kinetics of bacterial acquisition of Fe, Mo and V from soils may limit or control N2 fixation rates. N2-fixing bacteria produce siderophores (or ?iron carriers?) to bind iron in the external medium and take up the resulting Fe-siderophore complexes. Our recent work has shown that the siderophores are actually ?metallophores? used in the uptake of Mo and V, along with Fe. The biological acquisition of the various nitrogenase metal cofactors thus depends on their binding by bacterial metallophores. This project is organized around two major hypotheses: 1. Free-living N2-fixing bacteria excrete metallophores that are particularly efficient at capturing the metal (Mo, V or Fe) that is limiting N2 fixation; 2. Because of both competition with other metals for metallophore binding and scarcity in soils, Mo is inherently difficult to acquire and free-living N2-fixing bacteria often use alternative nitrogenases, particularly the V-nitrogenase, to fix N2. These hypotheses will be tested through a combination of laboratory and field experiments. Field studies will focus on sites where Mo may be limiting and employ molecular biological techniques to identify alternative nitrogenases.
Broader Impacts: One postdoctoral researcher, one graduate student and several undergraduates will work on this project and be mentored by the PIs. Students from the local junior colleges will participate in the summer field research. The PIs will participate in the Quest summer program for school teachers.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.