
NSF Org: |
ECCS Division of Electrical, Communications and Cyber Systems |
Recipient: |
|
Initial Amendment Date: | June 30, 2009 |
Latest Amendment Date: | June 30, 2009 |
Award Number: | 0901706 |
Award Instrument: | Standard Grant |
Program Manager: |
Zhi Tian
ECCS Division of Electrical, Communications and Cyber Systems ENG Directorate for Engineering |
Start Date: | August 1, 2009 |
End Date: | July 31, 2013 (Estimated) |
Total Intended Award Amount: | $450,000.00 |
Total Awarded Amount to Date: | $450,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
1523 UNION RD RM 207 GAINESVILLE FL US 32611-1941 (352)392-3516 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
1523 UNION RD RM 207 GAINESVILLE FL US 32611-1941 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | CCSS-Comms Circuits & Sens Sys |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041 |
ABSTRACT
The objective of this research is to design a mobile ad hoc network for small satellites that seamlessly integrates these new devices into the existing space communications infrastructure and, also, advances the transformative capabilities of small satellites, such as spatially distributed sensing and monitoring. The approach is to design low power, low mass small satellites with high data rate (greater than 1 gigabit per second) communications capabilities; design a network architecture, based on ad hoc and sensor networking concepts, that maximizes the capabilities of the limited power, mass and volume small satellites; and conduct simulations and experimental analysis of an actual space network to verify and validate the network design.
With respect to intellectual merit, the project has the potential to advance the capabilities of small satellites, which are a transformative technology that can lead to a responsive and cost-effective space industry. The new models, architectures, and protocols have the potential to provide researchers with more accurate techniques for space network simulation and planning, which will expand the utility of space vehicles and foster new research on space and terrestrial applications. The project leverages a unique set of resources, including a multidisciplinary team of investigators, industry partnerships, and state support, to design, build and deploy a space network.
With respect to broader impact, this project has the potential to advance important applications, such as earth observation, disaster monitoring, and multi-point remote sensing. Potential economic benefits include lowering design cost, shortening deployment time, and extending functionality for space vehicles. The research is integrated with the investigators' ongoing educational efforts as faculty advisors of various student organizations that will encourage U.S. and students from underrepresented groups to seek advanced degrees in science and engineering through their participation in this multidisciplinary project.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.