
NSF Org: |
DMR Division Of Materials Research |
Recipient: |
|
Initial Amendment Date: | August 6, 2008 |
Latest Amendment Date: | August 6, 2008 |
Award Number: | 0817541 |
Award Instrument: | Standard Grant |
Program Manager: |
Charles E. Bouldin
DMR Division Of Materials Research MPS Directorate for Mathematical and Physical Sciences |
Start Date: | September 1, 2008 |
End Date: | August 31, 2011 (Estimated) |
Total Intended Award Amount: | $247,072.00 |
Total Awarded Amount to Date: | $247,072.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
110 INNER CAMPUS DR AUSTIN TX US 78712-1139 (512)471-6424 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
110 INNER CAMPUS DR AUSTIN TX US 78712-1139 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | MPS DMR INSTRUMENTATION |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
Technical Abstract
The objective of this proposal is to build a novel near-field scanning optical microscope (NSOM), integrating a scanning MEMS probe with a single-layer nanocrystals based light emitting diode (Nano-LED) fabricated on the probe tip, for molecular imaging and patterning of biological materials. The expected light source size is 5~10 nm, an order of magnitude reduction from that of a current advanced NSOM. The emission wavelength of the probe covers the spectrum from near-UV to the visible range, with imaging resolutions well beyond the diffraction limit. The ?Nano-Light source on chip? technology will open many exciting opportunities in biomedical and industrial applications including near-field microscopy of sub-cellular structures, direct material patterning, ultra high-density data storage, and compact light-on-chip biosensors and biochips.
Non-technical Abstract
The proposed near-field imaging instrument will be developed using a new class of scanning probes with nanoscale light emitting probe tip, where the emission is well confined in a single layer of nanoparticles (diameter: 5~10nm). Downsizing the integrated light source on the probe directly leads to improvement of the resolving power of the microscope.
The main benefits of the new instrument can be summarized as: (1) the silicon scanning probe is mass-producible; (2) no external light source is required; and (3) high optical resolution substantially beyond diffraction limit; The near-field scanning optical microscope has been used to explore nano-scale structures such as inorganic nanoparticles, organic thin films, and biomaterials. We expect that the novel probe based microscope with molecular resolution will be beneficial for significantly advancing these applications. In addition, direct integration of light source on probe is highly desirable to further extend the applications of the instrument into a compact assembly in biomedical applications such as biochips or portable devices for point-of-care technologies.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.