
NSF Org: |
IIS Division of Information & Intelligent Systems |
Recipient: |
|
Initial Amendment Date: | August 9, 2008 |
Latest Amendment Date: | August 9, 2008 |
Award Number: | 0808661 |
Award Instrument: | Standard Grant |
Program Manager: |
Sylvia Spengler
sspengle@nsf.gov (703)292-7347 IIS Division of Information & Intelligent Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | August 1, 2008 |
End Date: | July 31, 2012 (Estimated) |
Total Intended Award Amount: | $149,399.00 |
Total Awarded Amount to Date: | $149,399.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
5000 FORBES AVE PITTSBURGH PA US 15213-3815 (412)268-8746 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
5000 FORBES AVE PITTSBURGH PA US 15213-3815 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Information Technology Researc |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
A fundamental and hard question in biology is identification of organisms. This proposal focuses on identification of nematodes, which are particularly difficult to identify, with the average identification requiring significant time and high level of expertise. Nematodes have direct and significant effect on humans, other animals, and agriculture. Four species of nematode parasites infect over 2 billion people worldwide, and one type of nematode causes one-third of the total estimated worldwide annual yield losses to all soybean pathogens. The current limiting factors for identification are the lack of tools and automation, the need for image comparison off-line and a need for significant expertise. To enable seasoned researchers as well as students to use resources, the team will build on image searching work, using a set of images that will make nematode identification a simple process of point and click. In addition to enabling research by harnessing data and experience of experts, the work may make biology more accessible. The team will build a computer-assisted interactive navigator that will intelligently assist and learn from the user. The work can be extended to many other biological data sets. The research challenges include extraction of features and similarity functions, and the mining, clustering, and anomaly detection for image and non-image data. Graduate students are engaged in the research and outreach involving high school students is also planned.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.