
NSF Org: |
DMS Division Of Mathematical Sciences |
Recipient: |
|
Initial Amendment Date: | April 7, 2008 |
Latest Amendment Date: | April 7, 2008 |
Award Number: | 0801191 |
Award Instrument: | Standard Grant |
Program Manager: |
Andrew Pollington
adpollin@nsf.gov (703)292-4878 DMS Division Of Mathematical Sciences MPS Directorate for Mathematical and Physical Sciences |
Start Date: | July 1, 2008 |
End Date: | February 28, 2010 (Estimated) |
Total Intended Award Amount: | $125,993.00 |
Total Awarded Amount to Date: | $125,993.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
3112 LEE BUILDING COLLEGE PARK MD US 20742-5100 (301)405-6269 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
3112 LEE BUILDING COLLEGE PARK MD US 20742-5100 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ALGEBRA,NUMBER THEORY,AND COM |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
This proposal aims to investigate relations between special values of L-functions, cycles and periods with important applications to some open conjectures about L-functions such as those of Birch-Swinnerton-Dyer and Bloch-Kato-Beilinson. Specifically, the investigator and his collaborators will (i) Study the algebraic cycles associated to Rankin-Selberg L-functions and their images under Abel-Jacobi maps, and apply these results to give new constructions of rational points on CM elliptic curves; (ii) Study p-adic L-functions and the Iwasawa main conjecture for CM Hida deformations; (iii) Explore methods to prove a conjecture of his relating periods of quaternionic modular forms to adjoint L-values, with applications to some cases of the Bloch-Kato conjecture (iv) Study the problem of constructing and counting invariant linear forms on a triple product of representations of the metaplectic group, thus generalizing results on triple product L-functions associated to modular forms of integral weight to the setting of modular forms of half-integral weight.
The general focus of this proposal is the area of number theory. Number theory has to do with such objects as prime numbers and diophantine equations. Other than being perhaps the oldest branch of mathematics, it is of great significance in today's world, since many cryptographic protocols (needed for secure transmissions over the internet) and error correcting codes (needed for compact discs, hard discs and the like) are based on number theoretic methods. These practical applications in fact involve rather sophisticated geometrical objects such as elliptic curves. Over the last half-century, we have realized that one can gain a better understanding of these geometric objects by studying certain functions, called L-functions. Conjecturally one expects that very interesting information about the geometric object is encoded in the behavior of the associated L-function at certain special points. The investigator hopes to deepen our understanding of this connection through the work to be done in the current proposal. One of the concrete consequences of this project will be a new method to find solutions in rational numbers to certain cubic equations, a central problem in number theory.
Please report errors in award information by writing to: awardsearch@nsf.gov.