
NSF Org: |
OPP Office of Polar Programs (OPP) |
Recipient: |
|
Initial Amendment Date: | April 16, 2008 |
Latest Amendment Date: | June 4, 2009 |
Award Number: | 0739372 |
Award Instrument: | Continuing Grant |
Program Manager: |
Julie Palais
OPP Office of Polar Programs (OPP) GEO Directorate for Geosciences |
Start Date: | June 1, 2008 |
End Date: | May 31, 2013 (Estimated) |
Total Intended Award Amount: | $225,087.00 |
Total Awarded Amount to Date: | $225,087.00 |
Funds Obligated to Date: |
FY 2009 = $171,526.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
4333 BROOKLYN AVE NE SEATTLE WA US 98195-1016 (206)543-4043 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
4333 BROOKLYN AVE NE SEATTLE WA US 98195-1016 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ANT Glaciology |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.078 |
ABSTRACT
Catania 0739654
This award supports a project to study the Amundsen Sea drainage system and improve understanding of the impact of recent glaciological changes as an aid to predicting how this region will change in the future. The intellectual merit of the work is that the Amundsen Sea drainage system has been a recent focus for glaciological research because of rapid changes occurring there as a result of grounding line retreat. The work will focus on the regions of flow transition and will map the internal stratigraphy of the ice sheet across the Thwaites Glacier shear margins and use the age and geometry of radar-detected internal layers to interpret ice flow history. Thwaites Glacier (one of the main pathways for ice drainage in the region) has recently widened and may continue to do so in the near future. Thwaites Glacier may be particularly vulnerable to grounding line retreat because it lacks a well-defined subglacial channel. The subglacial environment exerts strong control on ice flow and flow history will be mapped in the context of bed topography and bed reflectivity. The plan is to use existing ice-penetrating radar data and coordinate with planned upcoming surveys to reduce logistical costs. The work proposed here will take three years to complete but no additional fieldwork in Antarctica is required. More detailed ground-based geophysical (radar and seismic) experiments will be needed at key locations to achieve our overall goal and the work proposed here will aid in identifying those regions. The broader impacts of the project are that it will initiate a new collaboration among radar communities within the US including those that are on the forefront of radar systems engineering and those that are actively involved in radar-derived internal layer and bed analysis. The project will also provide support for a postdoctoral researcher and a graduate student, thus giving them exposure to a variety of methodologies and scientific issues. Finally, there are plans to further develop the "Wired Antarctica" website designed by Ginny Catania with the help of a student-teacher. This will allow for the existing lesson plans to be updated to Texas State standards so that they can be used more broadly within state middle and high schools.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.