
NSF Org: |
DMS Division Of Mathematical Sciences |
Recipient: |
|
Initial Amendment Date: | June 27, 2007 |
Latest Amendment Date: | April 6, 2009 |
Award Number: | 0701053 |
Award Instrument: | Continuing Grant |
Program Manager: |
Andrew Pollington
adpollin@nsf.gov (703)292-4878 DMS Division Of Mathematical Sciences MPS Directorate for Mathematical and Physical Sciences |
Start Date: | July 1, 2007 |
End Date: | February 28, 2010 (Estimated) |
Total Intended Award Amount: | $119,998.00 |
Total Awarded Amount to Date: | $119,998.00 |
Funds Obligated to Date: |
FY 2008 = $40,000.00 FY 2009 = $27,280.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
845 N PARK AVE RM 538 TUCSON AZ US 85721 (520)626-6000 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
845 N PARK AVE RM 538 TUCSON AZ US 85721 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ALGEBRA,NUMBER THEORY,AND COM |
Primary Program Source: |
01000809DB NSF RESEARCH & RELATED ACTIVIT 01000910DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
Abstract for award DMS-0701053 of Ulmer
Dr. Ulmer proposes to work on three projects related to ranks of abelian varieties and the Birch and Swinnerton-Dyer conjecture over towers of function fields. In the first project he plans to exhibit non-abelian towers of function fields over which certain L-functions have zeroes of arbitrarily large order at the critical point; this builds on his recent work demonstrating the analogous result in abelian towers. In the second project, he plans to investigate general criteria which guarantee that Jacobians of curves satisfy the conjecture of Birch and Swinnerton-Dyer in every layer of a tower of function fields; again this extends his recent work. In the third project, Dr. Ulmer will try to extend recent results which allow one to show that certain abelian varieties have bounded ranks in the layers of a tower of function fields. All three of these projects currently involve students or post-docs and there is ample scope for their continued contribution.
Dr. Ulmer works in Arithmetical Algebraic Geometry, an area of fundamental mathematics whose motivating questions are about solving systems of polynomial equations with integers or rational numbers.
The field is curiosity-driven and was once thought to be without application. However, it is now known to be crucial to many modern technologies which affect our everyday lives, such as coding theory and cryptography. CD and DVD players, mobile telephones, and secure internet communication all rely on mathematics originally created in the pursuit of questions in arithmetical algebraic geometry. The field has deep connections to other areas of mathematics such as algebra, geometry, analysis, and topology, as well as mysterious links to other areas of science such as quantum field theory. Dr. Ulmer hopes to shed light on the connections between numbers, shapes, and calculus through his research on elliptic curves and L-functions. His work in this area also provides the basis for many education, outreach, and training activities in which he is engaged.
Please report errors in award information by writing to: awardsearch@nsf.gov.