Award Abstract # 0444134
Collaborative Research: Plankton Community Structure and Iron Distribution in the Southern Drake Passage and Scotia Sea

NSF Org: OPP
Office of Polar Programs (OPP)
Recipient: UNIVERSITY OF CALIFORNIA SAN DIEGO
Initial Amendment Date: August 8, 2005
Latest Amendment Date: August 8, 2005
Award Number: 0444134
Award Instrument: Standard Grant
Program Manager: Roberta Marinelli
OPP
 Office of Polar Programs (OPP)
GEO
 Directorate for Geosciences
Start Date: September 1, 2005
End Date: August 31, 2008 (Estimated)
Total Intended Award Amount: $1,256,000.00
Total Awarded Amount to Date: $1,256,000.00
Funds Obligated to Date: FY 2005 = $1,256,000.00
History of Investigator:
  • Brian Mitchell (Principal Investigator)
    gmitchell@ucsd.edu
  • Osmund Holm-Hansen (Co-Principal Investigator)
  • Farooq Azam (Co-Principal Investigator)
  • Sarah Gille (Co-Principal Investigator)
  • Katherine Barbeau (Co-Principal Investigator)
Recipient Sponsored Research Office: University of California-San Diego Scripps Inst of Oceanography
8622 DISCOVERY WAY # 116
LA JOLLA
CA  US  92093-1500
(858)534-1293
Sponsor Congressional District: 50
Primary Place of Performance: University of California-San Diego Scripps Inst of Oceanography
8622 DISCOVERY WAY # 116
LA JOLLA
CA  US  92093-1500
Primary Place of Performance
Congressional District:
50
Unique Entity Identifier (UEI): QJ8HMDK7MRM3
Parent UEI: QJ8HMDK7MRM3
NSF Program(s): ANT Organisms & Ecosystems,
ANT Ocean & Atmos Sciences
Primary Program Source: 0100CYXXDB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 9169, EGCH
Program Element Code(s): 511100, 511300
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.078

ABSTRACT

The Shackleton Fracture Zone (SFZ) in Drake Passage of the Southern Ocean defines a boundary between low and high phytoplankton waters. Low chlorophyll water flowing through the southern Drake Passage emerges as high chlorophyll water to the east, and recent evidence indicates that the Southern Antarctic Circumpolar Current Front (SACCF) is steered south of the SFZ onto the Antarctic Peninsula shelf where mixing between the water types occurs. The mixed water is then advected off-shelf with elevated iron and phytoplankton biomass. The SFZ is therefore an ideal natural laboratory to improve the understanding of plankton community responses to natural iron fertilization, and how these processes influence export of organic carbon to the ocean interior. The bathymetry of the region is hypothesized to influence mesoscale circulation and transport of iron, leading to the observed patterns in phytoplankton biomass. The position of the Antarctic Circumpolar Current (ACC) is further hypothesized to influence the magnitude of the flow of ACC water onto the peninsula shelf, mediating the amount of iron transported into the Scotia Sea. To address these hypotheses, a research cruise will be conducted near the SFZ and to the east in the southern Scotia Sea. A mesoscale station grid for vertical profiles, water sampling, and bottle incubation enrichment experiments will complement rapid surface surveys of chemical, plankton, and hydrographic properties. Distributions of manganese, aluminum and radium isotopes will be determined to trace iron sources and estimate mixing rates. Phytoplankton and bacterial physiological states (including responses to iron enrichment) and the structure of the plankton communities will be studied. The primary goal is to better understand how plankton productivity, community structure and export production in the Southern Ocean are affected by the coupling between bathymetry, mesoscale circulation, and distributions of limiting nutrients. The proposed work represents an interdisciplinary approach to address the fundamental physical, chemical and biological processes that contribute to the abrupt transition in chl-a which occurs near the SFZ. Given recent indications that the Southern Ocean is warming, it is important to advance the understanding of conditions that regulate the present ecosystem structure in order to predict the effects of climate variability. This project will promote training and learning across a broad spectrum of groups. Funds are included to support postdocs, graduate students, and undergraduates. In addition, this project will contribute to the development of content for the Polar Science Station website, which has been a resource since 2001 for instructors and students in adult education, home schooling, tribal schools, corrections education, family literacy programs, and the general public.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Hewes, C. D., Reiss, C.S., .Kahru, M. , Mitchell, B.G. , and Holm-Hansen, O. "Control of phytoplankton biomass by dilution and mixed layer depth in the western Weddell-Scotia Confluence (WSC)" Marine Ecology Progress Series , v.366 , 2008 , p.15
Hiscock, M. , Lance, V. , Apprill, A., Bidigare, R , Mitchell, B., Smith Jr. W., Barber, R. "Photosynthetic maximum quantum yield increases are an essential component of the Southern Ocean phytoplankton response to iron" Proceedings of the National Academy of Sciences , v.105(2) , 2008 , p.4775
Holm-Hansen, O., Kahru, M., Hewes, C. "Deep chlorophyll a maxima (DCMs) in pelagic Antarctic waters. II. Relation to bathymetric features and dissolved iron concentrations" Marine Ecology-Progress Series , v.297 , 2005 , p.71
Hopkinson, B., Mitchell, B. G., Reynolds, R. A., Wang, H., Selph, K., Measures, C., Hewes, C., Holm-Hansen, O., Barbeau, K. "Iron limitation Across Chlorophyll Gradients in the Southern Drake Passage: Phytoplankton Responses to Iron Addition and Photosynthetic Indicators of Iron Stress" Limnology and Oceanography , 2007 , p.2540
Hopkinson, B., Mitchell, B. G., Reynolds, R. A., Wang, H., Selph, K., Measures, C., Hewes, C., Holm-Hansen, O., Barbeau, K. "Iron limitation Across Chlorophyll Gradients in the Southern Drake Passage: Phytoplankton Responses to Iron Addition and Photosynthetic Indicators of Iron Stress" Limnology and Oceanography , v.52 , 2007 , p.2540
Kahru, M., Mitchell, B. G., Gille, S. T., Hewes, C. D. and Holm-Hansen, O. "Eddies enhance biological production in the Weddell-Scotia Confluence of the Southern Ocean" Geophys. Res. Let., 34, , v.24 , 2007 , p.L14603 10.1029/2007GL030430

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page