Award Abstract # 0436110
Collaborative Research: Environmental Variability, Bowhead Whale Distributions, and Inupiat Subsistence Whaling - Linkages and Resilience of an Alaskan Coastal System

NSF Org: OPP
Office of Polar Programs (OPP)
Recipient: UNIVERSITY OF RHODE ISLAND
Initial Amendment Date: September 30, 2004
Latest Amendment Date: September 30, 2004
Award Number: 0436110
Award Instrument: Standard Grant
Program Manager: Neil R. Swanberg
OPP
 Office of Polar Programs (OPP)
GEO
 Directorate for Geosciences
Start Date: September 15, 2004
End Date: August 31, 2008 (Estimated)
Total Intended Award Amount: $340,080.00
Total Awarded Amount to Date: $340,080.00
Funds Obligated to Date: FY 2004 = $340,080.00
History of Investigator:
  • Robert Campbell (Principal Investigator)
    rgcampbell@uri.edu
Recipient Sponsored Research Office: University of Rhode Island
75 LOWER COLLEGE RD RM 103
KINGSTON
RI  US  02881-1974
(401)874-2635
Sponsor Congressional District: 02
Primary Place of Performance: University of Rhode Island
75 LOWER COLLEGE RD RM 103
KINGSTON
RI  US  02881-1974
Primary Place of Performance
Congressional District:
02
Unique Entity Identifier (UEI): CJDNG9D14MW7
Parent UEI: NSA8T7PLC9K3
NSF Program(s): ARCSS-Arctic System Science
Primary Program Source: 0100CYXXDB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 0000, 1079, 9150, OTHR
Program Element Code(s): 521900
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.078

ABSTRACT

The coupling between atmosphere, sea ice, ocean, bowhead whales, and subsistence whaling by the Native human populations is fundamental to the physical-biological-human systems of the Northern Alaska Coast. Whale migration routes and habitat use are determined by zooplankton aggregations, which are driven by oceanographic conditions, which depend on the climatic regime. Successful hunting depends on interactions between environmental and societal factors that vary each year and are driven by forces originating outside the system. This complex suite of environment-whale-human factors comprises a system that is vulnerable both to global climate and human generated change. This proposal seeks to identify and understand the complex linkages, mechanisms, and interactions within and between the atmosphere, ocean, and human components of this system. The response and resilience of these components and the system as a whole to variable forcing by external environmental change will also be investigated. The work is highly interdisciplinary and focuses on the linked ocean-human systems of coastal Alaska, concentrating specifically near Barrow, Alaska.

Four distinct yet highly interrelated approaches to understanding the system are used: 1) Biological and physical ocean modeling to identify mechanisms of frontal and eddy formation and plankton aggregation, to describe the effects of environmental forcing from outside on the local ocean, and to understand longer term, past and future variability in outside forcing on whaling success, 2) High resolution field sampling to demonstrate presence of physical features and associated biological concentrations and to validate modeling, 3) Assessment of the resilience and vulnerability of the subsistence hunting economy and culture in Barrow, and 4) Retrospective analysis synthesizing modeled ocean and climate conditions with available information on whale location, feeding, and harvest success to asses the resilience and vulnerability of the whale-ocean-human system to environmental change.

Intrinsic Merit: On the local scale, the results of the research will provide a greater understanding of the factors influencing a natural resource, demonstrating linkages between discovery and application to policy issues of bowhead whale management. The social structure and fabric of the Inupiat communities are intimately linked to the whaling tradition and are particularly vulnerable to both environmental change and human-generated pressures. On the broader scale, the research will address how multiple physical, biological, and human factors are linked in a complex natural system that may be critically affected by environmental variability. Biogeochemical and physical manifestations of climate change in this region (e.g., ice reduction, changes in marine mammal migration and ecosystem structure) will have consequences for local human linkages to the Arctic ecosystem by influencing hunting success, ease of travel, and the relative importance of subsistence and cash economies and are representative of those of the broader Arctic with important impacts on global carbon cycling. All these topics are highly relevant to the Study of Environmental Arctic Change (SEARCH) program. This project is cutting-edge in that it assimilates research of multiple disciplines from oceanography to social science to address questions that can only successfully be answered using this multi-faceted, integrative approach.

Broader Impacts: The locally relevant science proposed for this project is of significant interest to the Barrow community and neighboring villages, to policy makers at the IWC, NOAA, and MMS, and to the broader public. The interdisciplinary collaborative partnership between academic researchers and staff at a federal agency and at a regional wildlife management agency is an investment in human and social capital that enhances the broader research infrastructure. Climate variability and its effects on access to and mobility within the Arctic Ocean have broader impacts for global and local commerce and national security. The proposed high school internship program involves the participation of native people who are often underrepresented in the fields of science and technology. Broader involvement of high school students and teachers through the ARMADA program will communicate to the scientists of the next generation understanding of field research, of the Arctic Ocean ecosystem, and of the importance of climate variability to this ecosystem.

PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH

Note:  When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

Berline, L; Spitz, YH; Ashjian, CJ; Campbell, RG; Maslowski, W; Moore, SE "Euphausiid transport in the Western Arctic Ocean" MARINE ECOLOGY-PROGRESS SERIES , v.360 , 2008 , p.163 View record at Web of Science 10.3354/meps0738

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page