Award Abstract # 0415019
IMR: Acquisition of a MATE Thermo-Mechanical Testing System for Research and Education in Materials Science and Engineering

NSF Org: DMR
Division Of Materials Research
Recipient: ALFRED UNIVERSITY
Initial Amendment Date: August 4, 2004
Latest Amendment Date: August 4, 2004
Award Number: 0415019
Award Instrument: Standard Grant
Program Manager: Charles E. Bouldin
DMR
 Division Of Materials Research
MPS
 Directorate for Mathematical and Physical Sciences
Start Date: August 15, 2004
End Date: October 31, 2004 (Estimated)
Total Intended Award Amount: $0.00
Total Awarded Amount to Date: $175,000.00
Funds Obligated to Date: FY 2004 = $0.00
History of Investigator:
  • Carl Boehlert (Principal Investigator)
    boehlert@egr.msu.edu
  • Alan Meier (Co-Principal Investigator)
Recipient Sponsored Research Office: Alfred University NY State College of Ceramics
1 SAXON DR
ALFRED
NY  US  14802-1232
(607)871-2964
Sponsor Congressional District: 23
Primary Place of Performance: Alfred University NY State College of Ceramics
1 SAXON DR
ALFRED
NY  US  14802-1232
Primary Place of Performance
Congressional District:
23
Unique Entity Identifier (UEI): J1B5PBG573T1
Parent UEI:
NSF Program(s): MPS DMR INSTRUMENTATION
Primary Program Source: app-0104 
Program Reference Code(s): 9161, AMPP
Program Element Code(s): 175000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.049

ABSTRACT

This NSF Instrumentation for Materials Research (IMR) Program proposal is for the acquisition of a MATE Thermo-Mechanical Test System, which can perform a variety of mechanical property measurements, including tension, compression, low- and high-cycle fatigue, thermomechanical fatigue (TMF), fatigue crack growth (FCG), creep, fracture toughness, etc., with precise (less than 0.15% nonlinearity and less than 0.10% hysteresis) servohydraulic control for loads up to 100kN and temperatures up to 1200oC. The intellectual merit of this acquisition lies in research and teaching of materials science and engineering, and the materials to be investigated include metals, ceramics, composites, glasses, nanomaterials, etc. This acquisition of this instrumentation will make significant contributions to analytical and teaching capabilities. In terms of research, the MATE Thermo-Mechanical Test System will be used to further the understanding of the processing-microstructure-property relationships of materials for projects sponsored by the NSF, the Department of Energy (DOE), the Department of Defense (DOD), the Environmental Protection Agency (EPA), the United States Automotive Materials Partnership (USAMP), and industry. In particular, it will be used to understand grain boundary deformation processes and microstructure-property relationships for high-temperature structural alloys, including nickel-based superalloys and titanium alloys, investigated with Dr. Carl Boehlert's NSF CAREER Award (DMR-0134789). The specific goal of this research program is to develop the untapped potential of grain boundary engineering (GBE) for high-temperature structural alloys. The primary objective is to understand the inter-relationship of processing, grain boundary character distribution (GBCD), and creep behavior. Several additional research projects will also utilize this instrumentation. For example, it will be used for fatigue, fracture toughness, and FCG experiments to understand microstructure-property relationships of biomedical Ti alloys being developed as implant materials. It will also be used to investigate the mechanical behavior of Mg alloys, Si3N4, polymers, glasses, etc.

This NSF Instrumentation for Materials Research (IMR) Program proposal is for the acquisition of a MATE Thermo-Mechanical Test System, which can perform a variety of mechanical property measurements, including tension, compression, low- and high-cycle fatigue, thermomechanical fatigue (TMF), fatigue crack growth (FCG), creep, fracture toughness, etc. The intellectual merit of this acquisition lies in research and teaching of materials science and engineering, and the materials to be investigated include metals, ceramics, composites, glasses, nanomaterials, etc. This instrumentation will significantly benefit both undergraduate and graduate teaching, will encourage interdisciplinary studies, and will establish new research capabilities for performing research and research-related education. Overall, the acquisition of this instrumentation will benefit research and teaching by making a state-of-the-art mechanical testing system available to both undergraduate and graduate students as part of their curriculum and research activities. The broader impacts of this acquisition include the generation of material-property information not provided with existing equipment, and it will stimulate investigations of materials into new areas within the community. Many ongoing and planned research projects within the various university departments, highlighting multidisciplinary research areas and a variety of material systems, will benefit from the enhanced capabilities that the acquisition of the MATE Thermomechanical Test System will bring.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page