
NSF Org: |
OCE Division Of Ocean Sciences |
Recipient: |
|
Initial Amendment Date: | August 21, 2023 |
Latest Amendment Date: | August 21, 2023 |
Award Number: | 2322676 |
Award Instrument: | Continuing Grant |
Program Manager: |
Cynthia Suchman
csuchman@nsf.gov (703)292-2092 OCE Division Of Ocean Sciences GEO Directorate for Geosciences |
Start Date: | September 1, 2023 |
End Date: | August 31, 2028 (Estimated) |
Total Intended Award Amount: | $6,374,995.00 |
Total Awarded Amount to Date: | $2,549,998.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
266 WOODS HOLE RD WOODS HOLE MA US 02543-1535 (508)289-3542 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
266 WOODS HOLE RD WOODS HOLE MA US 02543-1535 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | LONG TERM ECOLOGICAL RESEARCH |
Primary Program Source: |
01002526DB NSF RESEARCH & RELATED ACTIVIT 01002627DB NSF RESEARCH & RELATED ACTIVIT 01002728DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.050 |
ABSTRACT
The Northeast U.S. Shelf (NES) is the region of the Northwest Atlantic Ocean that overlies the continental shelf from North Carolina to Maine. The NES has a long history of intense human utilization and provides an array of ecosystem services including shipping, recreation, conservation, and energy development. The NES also comprises a seasonally dynamic and productive ecosystem, supporting renowned fisheries, whose integrity is critical to the health of the Northeast U.S. economy. The NES ecosystem?s productivity is fueled by planktonic organisms that interact with each other in complex food webs whose structure depends on environmental conditions (e.g., temperature, light, and nutrient levels). These conditions are rapidly changing because of climate-change-related warming and human utilization. For example, the NES is seeing the largest development of coastal wind farms in the U.S. to date. Phase II of the Northeast U.S. Shelf Long-Term Ecological Research program (NES-LTER II) advances our ability to predict how anthropogenic impacts will affect the dynamics of the shelf?s planktonic food webs and their ability to support the productivity of higher trophic levels, from fish to whales and humans. Because the NES is subject to long-term challenges that will impact many people, the project emphasizes an active education component for helping to train the next generation of marine scientists and outreach activities to increase public understanding of marine science and technology. The project team conducts education and outreach via three main components: (1) training and mentoring for early career researchers from undergraduates to postdoctoral researchers in LTER research; (2) an LTER Schoolyard program that engages middle and high school teachers and students; and (3) public outreach through targeted events, the project website, and social media channels.
Patterns of ecosystem change over seasons to decades have been documented in the NES, but the key mechanisms linking changes in the physical environment, planktonic food webs, and higher trophic levels remain poorly understood. As a result, predictive capability is limited and management strategies are largely reactive. To address these needs, NES II is targeting a mechanistic understanding of how food web structure and function responds to environmental conditions, natural variability and human induced changes. NES II combines observations that provide regional-scale context, process cruises along a high gradient cross-shelf transect, high-frequency time series at an inner-shelf location, coupled biological-physical food web models, and targeted population models. In addition, the research team is investigating how community structure and trophic transfer are impacted by disturbances including (i) the increasing prevalence of heat waves, (ii) intrusions of offshore water associated with increasing instability in the Gulf Stream, and (iii) offshore wind farms now under construction on the NES. The long-term research plan is guided by the overarching science question: ?How is climate change impacting the pelagic NES ecosystem and, in particular, affecting the relationship between compositional (e.g., species diversity and size structure) and aggregate (e.g., rates of primary production, and transfer of energy to higher trophic levels) variability?? The investigators are assessing the extent to which the NES ecosystem possesses a biodiversity reservoir that is resilient to dramatic changes in the environment and that will allow the ecosystem to maintain overall productivity.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.