
NSF Org: |
DUE Division Of Undergraduate Education |
Recipient: |
|
Initial Amendment Date: | June 26, 2023 |
Latest Amendment Date: | June 26, 2023 |
Award Number: | 2301164 |
Award Instrument: | Standard Grant |
Program Manager: |
Christine Delahanty
cdelahan@nsf.gov (703)292-8492 DUE Division Of Undergraduate Education EDU Directorate for STEM Education |
Start Date: | July 1, 2023 |
End Date: | June 30, 2026 (Estimated) |
Total Intended Award Amount: | $299,993.00 |
Total Awarded Amount to Date: | $299,993.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
26 ROCKLAND ST NATICK MA US 01760-5852 (508)397-7021 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
26 ROCKLAND ST NATICK MA US 01760-5852 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | Advanced Tech Education Prog |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.076 |
ABSTRACT
This Track 2 ATE project aims to serve the national interest by cultivating the next generation workforce to lead Hawaii?s transition to 100% renewable energy by 2045. A central challenge in renewable energy generation is it often confronts other basic needs such as food, water, and culture, as its distributed nature demands a lot of space. As such, large-scale deployments of renewable energy generators in our country would be unthinkable without establishing wide social acceptance. Studies have suggested that greater public participation in planning and designing of renewable energy solutions can increase their transparency and gain more public trust and community support. However, the current paradigm of technical education in the field of renewable energy lacks essential elements for teaching students how to address public concerns with technological solutions and then communicate the engineering results to stakeholders. This project will supplement these elements to existing courses in community colleges and use the social environments of public schools as testbeds for students to learn and practice those ?soft skills.?
In partnership with five high schools in Hawaii, Kapiolani Community College (KCC) and the Institute for Future Intelligence (IFI) will develop innovative educational programs that engage community college and high school students to learn the knowledge and skills needed to take on the renewable energy challenge. These programs will use students? own homes, schools, and communities as the application scenarios for designing hypothetical solar and wind energy solutions. Students will learn how to meet the diverse needs of their families and communities while minimizing adverse effects on local ecosystems, cultures, and economies. To consolidate the pathway of career and technical education from the secondary level to the tertiary level, the project will designate KCC students who have successfully completed these programs as teaching assistants to teachers and design tutors to students in collaborating high schools to help them implement customized versions of the programs. The project will be empowered by Aladdin, an open-source, Web-based computer-aided design tool developed by IFI as a citizen science platform that supports public participation in renewable energy engineering and planning. Aladdin allows anyone to design their own renewable energy solutions for their communities, share the proposed solutions via social networks, and draw public interest in crowdfunding their construction. KCC will run annual professional development workshops to introduce the curricular and technological innovations of this project to secondary teachers in Hawaii. Interested teachers will then partner with KCC to implement these innovations in their schools. This project will be overseen by an Advisory Board consisting of experts in the fields of renewable energy, technical education, and policy making. This project is funded by the Advanced Technological Education program that focuses on the education of technicians for the advanced-technology fields that drive the nation?s economy.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.