
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | July 24, 2022 |
Latest Amendment Date: | June 26, 2023 |
Award Number: | 2212590 |
Award Instrument: | Standard Grant |
Program Manager: |
Abraham Matta
amatta@nsf.gov (703)292-4624 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | October 1, 2022 |
End Date: | September 30, 2026 (Estimated) |
Total Intended Award Amount: | $1,056,131.00 |
Total Awarded Amount to Date: | $1,088,131.00 |
Funds Obligated to Date: |
FY 2023 = $32,000.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
1776 E 13TH AVE EUGENE OR US 97403-1905 (541)346-5131 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
5219 UNIVERSITY OF OREGON Eugene OR US 97403-5219 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
Special Projects - CNS, Networking Technology and Syst |
Primary Program Source: |
01002324DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
The networks comprising the Internet must be monitored to ensure high quality, reliable service to end users. Emerging network telemetry systems that rely on modern data plane technologies (e.g., programmable switches) offer a high degree of visibility into todays? networks and promise to enable a new generation of network security and network performance applications (e.g., detecting new cyberattacks; supporting quality-of-experience requirements for video streaming). These systems consider tasks that are defined as queries and compiled onto a switch. The switch then performs packet processing at line rate for only those packets that satisfy the given query. However, existing network telemetry system are typically designed for static query and traffic workloads, don?t scale with the number of queries or traffic rate, and assume that tasks are simple (e.g., stateless, single switch). This project seeks to develop a class of next-generation network telemetry systems that address these challenges.
The emergence of runtime programmable data plane devices is leveraged by this project, which seeks to develop and experimentally evaluate a scalable telemetry system that can accommodate traffic and query dynamics and support adaptive telemetry applications over multiple switches across a network. These devices allow for time-division-multiplexing of limited switch resources which in turn facilitates fine-grained resource management to cope with dynamics and achieve scalability. The novel scientific contributions of this project include (i) a multi-objective approximation-based query scheduling scheme to manage resources on a single switch with multiple stages while controlling accuracy-latency-reporting load tradeoff; (ii) an extension of the scheduling scheme to seamlessly support queries that require traffic visibility across multiple switches; and (iii) support for adaptive telemetry applications to facilitate their stateful and iterative execution, and testing.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.