
NSF Org: |
EEC Division of Engineering Education and Centers |
Recipient: |
|
Initial Amendment Date: | August 9, 2022 |
Latest Amendment Date: | November 15, 2024 |
Award Number: | 2133504 |
Award Instrument: | Cooperative Agreement |
Program Manager: |
Randy Duran
rduran@nsf.gov (703)292-5326 EEC Division of Engineering Education and Centers ENG Directorate for Engineering |
Start Date: | September 1, 2022 |
End Date: | August 31, 2027 (Estimated) |
Total Intended Award Amount: | $26,000,000.00 |
Total Awarded Amount to Date: | $13,703,000.00 |
Funds Obligated to Date: |
FY 2023 = $4,500,000.00 FY 2024 = $5,703,000.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
2200 W MAIN ST DURHAM NC US 27705-4640 (919)684-3030 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
Box 90287, 121 Hudson Hall Durham NC US 27708-0287 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | ERC-Eng Research Centers |
Primary Program Source: |
01002324DB NSF RESEARCH & RELATED ACTIVIT 01002425DB NSF RESEARCH & RELATED ACTIVIT 01002526DB NSF RESEARCH & RELATED ACTIVIT 01002627DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041 |
ABSTRACT
Microbes have colonized and adapted to most every environment on Earth, including the built environments that humans have created, such as the homes where we live and the pipes that bring us drinking water. It has been well established that microbial communities, or microbiomes, that colonize people have a direct influence on human health. The microbiome of the built environment, in particular, has gained increasing recognition for its key role in human health through its interaction with the human microbiome. However, despite this knowledge, no systematic infrastructure exists to decipher how microbial systems adapt to and grow within built environments, impeding our ability to diagnose built environment health and harness the power inherent to those microbiomes. The Engineering Research Center for Precision Microbiome Engineering (PreMiEr) will create microbiome-based diagnostic tools and develop microbiome engineering approaches to monitor and operate built environments that maximize human health protection. Informed by societal needs and research-stakeholder teams, PreMiEr's research design will work to prevent the spread of infectious agents, promote the colonization of beneficial microorganisms, and lead to strategies for controlling pandemics and antibiotic resistance-phenomena that have led to over six million deaths worldwide (as of June 2022) and cost the global economy an estimated $8 trillion in the last year alone. Integral to its research vision, PreMiEr will create diverse and inclusive interdisciplinary research and training hubs where engineers, microbiologists, social scientists, and ethicists work alongside theorists, model builders, and computational scientists to develop technologies that enable transformative engineering discoveries in safe, sustainable and responsible ways.
Our capacity to engineer microbiomes requires a fundamental understanding of concepts of community ecology and an ability to track, control, and model those interactions. To apply microbiome engineering to real-world systems, community level interactions must be integrated into a comprehensive, scalable modeling framework that requires iterative evaluation and validation in model testbeds. PreMiEr?s research organization is designed to generate fundamental understanding across these levels and functionalities, culminating in the development of a framework that enables the biodesign of smart and healthy built environments. PreMiEr will leverage advances in high-throughput genomic sequencing, high-resolution mass spectrometry, computational performance, and statistical modeling to unravel previously unknown mechanistic interactions. Enabling technologies will be developed to detect and define interactions in the built environment, including approaches that probe microbial dark matter for the development of built-environment health diagnostic tools; methods for targeted delivery of desired genetic features and microbial vectors; tools for fine in situ functional tuning; and predictive scalable statistical microbiome engineering models that consider high dimensionality, sparsity, and heterogeneity. These new technology elements will enable us to test hypotheses related to microbiome assembly and function. Importantly, by incorporating social scientists and ethicists into PreMiEr?s research framework, non-social scientists? work will be informed by consideration of the ethical, societal, and policy implications of their microbiome engineering discoveries. Through rigorous evaluation and iterative refinement of curricula, and institutional practices designed to support a culture of convergence and the dissemination of findings, PreMiEr will contribute to best practices in domestic training. The PreMiEr ERC provides immersive research and training experiences at the interface of multiple disciplines to address complex challenges, training the next generation of engineers and scientists with the technical and professional skills needed to compete in the emerging arenas of microbial science and engineering. Ultimately, PreMiEr?s work advances collaborations and discovery focused on environmental microbiomes to engineer healthy built environments.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.