
NSF Org: |
CMMI Division of Civil, Mechanical, and Manufacturing Innovation |
Recipient: |
|
Initial Amendment Date: | August 20, 2021 |
Latest Amendment Date: | August 20, 2021 |
Award Number: | 2119643 |
Award Instrument: | Standard Grant |
Program Manager: |
Siddiq Qidwai
sqidwai@nsf.gov (703)292-2211 CMMI Division of Civil, Mechanical, and Manufacturing Innovation ENG Directorate for Engineering |
Start Date: | January 1, 2022 |
End Date: | May 31, 2025 (Estimated) |
Total Intended Award Amount: | $1,428,383.00 |
Total Awarded Amount to Date: | $1,428,383.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
10889 WILSHIRE BLVD STE 700 LOS ANGELES CA US 90024-4200 (310)794-0102 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
CA US 90095-1406 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | DMREF |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041 |
ABSTRACT
A material's force-displacement response, modal response, and wave transmission and absorption response to dynamic loadings, all can be construed as its characteristic fingerprints. The behaviors of materials under dynamic loads that are applied within a fraction of a second remain poorly understood due to the complex, nonlinear interplay between material microstructure, geometry, and applied load. The complexity increases manifold for architected materials, in which topological considerations are paramount to achieve specific responses or functions. Consequently, methodical design of architected materials with optimal dynamic fingerprints is a challenge that has not been adequately addressed. By seamlessly integrating advances in graph network theory, machine learning, numerical simulations, and high-speed additive manufacturing approaches, this Designing Materials to Revolutionize and Engineer our Future (DMREF) award will accelerate the understanding, inverse design, and fabrication of architected materials with tailorable dynamic fingerprints. The outcome will be materials with inversely designed three-dimensional micro-architectures fabricated via desktop additive manufacturing with prescribed behaviors, such as impact shielding and wave transmission. Applications include energy and shock absorption, acoustic wave filtering, stretchable electronics, and other multifunctional material systems. The project will also train graduate and undergraduate students in the new paradigm of autonomous inverse design and additive manufacturing based on desired behaviors. Moreover, demonstration modules, design games, and additive printing activities will be used for outreach to K-12 students.
This project will extend graph-based generative machine learning modeling techniques to identify the underlying motifs within architected materials to understand their dynamic behaviors as well as provide an inverse design framework for optimized functional responses. The first step is to develop a graph space model to represent an arbitrary architected material composed of an arbitrarily complex 3D micro-architecture, by size, scale, hierarchy, lattice topology, and material attributes. The next step involves obtaining high-fidelity experimental data and higher-order simulation data with large amounts of lower-order experimental data to accelerate the training and discovery process. A forward graph-based machine learning model will be trained on the combined data for functional response prediction. Lastly, the graph neural network with reinforcement learning will be used to generate graphs with the desired properties based on the forward predictive model. This extensive and experimentally validated framework will be used to discover fundamental knowledge pertaining to structural and dynamic characteristics, which will then be leveraged to inversely design materials with prescribed dynamic fingerprint.
This project is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG) and the Division of Information and Intelligent Systems (IIS) in the Directorate for Computer and Information Science and Engineering (CISE).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.