
NSF Org: |
DMR Division Of Materials Research |
Recipient: |
|
Initial Amendment Date: | February 8, 2021 |
Latest Amendment Date: | August 16, 2024 |
Award Number: | 2047019 |
Award Instrument: | Continuing Grant |
Program Manager: |
Jonathan Madison
jmadison@nsf.gov (703)292-2937 DMR Division Of Materials Research MPS Directorate for Mathematical and Physical Sciences |
Start Date: | July 1, 2021 |
End Date: | June 30, 2025 (Estimated) |
Total Intended Award Amount: | $569,974.00 |
Total Awarded Amount to Date: | $569,974.00 |
Funds Obligated to Date: |
FY 2022 = $112,480.00 FY 2023 = $114,880.00 FY 2024 = $191,354.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
3400 N CHARLES ST BALTIMORE MD US 21218-2608 (443)997-1898 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
3400 N. Charles Street Baltimore MD US 21218-2625 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): | METAL & METALLIC NANOSTRUCTURE |
Primary Program Source: |
01002021DB NSF RESEARCH & RELATED ACTIVIT 01002324DB NSF RESEARCH & RELATED ACTIVIT 01002526DB NSF RESEARCH & RELATED ACTIVIT 01002223DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.049 |
ABSTRACT
Non-Technical Summary:
Ordered intermetallic compounds (OICs) are metallic alloys with a periodic atomic arrangement of two (or more) metal elements. These OICs play an important role in technologies such as catalysis, batteries, and shape-memory alloys. Their application space is limited, however, because these materials can only be prepared at high temperatures, often eroding control over important material parameters. Making the low-temperature synthesis of OICs possible requires a precise understanding of how atoms move within solid materials. This Faculty Early Career Award (CAREER) will support research in the laboratory of Dr. Anthony Shoji Hall at the Johns Hopkins University to examine pathways that allow for the control of atom movement at low temperatures and thereby enable the preparation of ordered intermetallic nanomaterials at room temperature and atmospheric pressure. By enabling the synthesis of these materials at low temperatures, this work will substantially broaden the application space of OICs because it now allows for more fine control over important materials parameters. Dr. Hall?s laboratory will actively share their scientific passion and discoveries with the broader community by engaging in outreach at inner-city Baltimore high schools and universities. The first activity will leverage an established program, STEM achievement in Baltimore elementary schools (SABES), to encourage elementary students to pursue a degree in STEM. This project will also create a new program to encourage URM high school students to pursue degrees in STEM and to improve the retainment of URM (under)graduate students in STEM careers.
Technical Summary:
Despite decades of intense research, OIC nanoparticles have failed to replace conventional nanomaterials due to (1) lack of low-temperature synthetic methods that can overcome slow solid-state diffusion rates which inhibits atomic ordering, (2) inability to tune composition and phase to optimize the desired application, and (3) lack of fundamental understanding needed for progress on these issues. The purpose of this CAREER proposal is to examine the phase transformations of low melting point alloys to higher melting point OICs richer in the nobler and more active metal at ambient temperature and pressure by removal of the less noble component (e.g., transforming PdBi2 to Pd3Bi, or CuZn4 to Cu5Zn8) via a process known as dealloying. Fundamental insights from this project will enable the rational development of OIC nanostructures for applications of technological relevance and improve our understanding of material stability under electrocatalytic conditions. To understand the origin of the electrochemical dealloying-mediated phase conversion process, the PI will investigate the following objectives: (1) Elucidate the role of melting temperature on bulk diffusion and lattice reorganization. (2) Develop synthesis methods for controlled compositions of de-alloyed OICs. (3) Elucidate dealloying via in-situ spectroscopic methods. Materials made by this electrochemically mediated phase conversion process will be evaluated as anodes for Li-metal batteries to demonstrate the utility of the synthetic method. The broader impacts of this proposal will encourage underrepresented minority (URM) K-12 students and (under)graduate students to pursue careers in STEM through engagement in outreach programs. URM students lack access to relatable role models in STEM fields because of underrepresentation. To address this issue, Dr. Hall will make himself available for informal ?coffee hour discussions? to serve as a mentor and role model for URM students (high school-aged, undergraduate, and graduate students) in the Baltimore area. The Hall group will also work with K-12 aged URM students on inquiry-based scientific projects by participating in the STEM Achievement in Baltimore Elementary Schools (SABES) program.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.