
NSF Org: |
CMMI Division of Civil, Mechanical, and Manufacturing Innovation |
Recipient: |
|
Initial Amendment Date: | February 12, 2019 |
Latest Amendment Date: | February 12, 2019 |
Award Number: | 1846817 |
Award Instrument: | Standard Grant |
Program Manager: |
Giovanna Biscontin
gibiscon@nsf.gov (703)292-2339 CMMI Division of Civil, Mechanical, and Manufacturing Innovation ENG Directorate for Engineering |
Start Date: | March 1, 2019 |
End Date: | February 29, 2024 (Estimated) |
Total Intended Award Amount: | $500,000.00 |
Total Awarded Amount to Date: | $500,000.00 |
Funds Obligated to Date: |
|
History of Investigator: |
|
Recipient Sponsored Research Office: |
633 CLARK ST EVANSTON IL US 60208-0001 (312)503-7955 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
2145 Sheridan Rd Evanston IL US 60208-3113 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
ECI-Engineering for Civil Infr, CAREER: FACULTY EARLY CAR DEV |
Primary Program Source: |
|
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.041 |
ABSTRACT
This Faculty Early Career Development Program (CAREER) award will investigate the physical processes through which machines interact with soils, and develop theoretical models that will underpin the design of future, autonomous devices used for construction, mining, agriculture, and mobility. Humans move, manipulate, and interact with soil on a massive scale for civil construction, mining, and agriculture using machines that have been designed and built primarily through trial and error, without fundamental knowledge of how soils respond under different loading conditions. Advances in mechatronics and robotics can revolutionize the design of these machines. Since existing techniques for simulation and design are largely for devices operating on hard surfaces, a major impediment to answering this question and others is the lack of methods to predict how machines operate on deformable terrain. This project will collect data and launch an integrated research and educational program dedicated specifically to Soil-Machine Interaction (SMI), one that ultimately will examine a wide variety of machine configurations and soil types. The broader impacts of this project will shape an emerging, interdisciplinary field by stimulating technological advances in the devices used for construction, mining, agriculture, and mobility. Through integrated educational aims, the project will also attract, excite and educate a diverse group of future civil engineers through inclusive outreach and educational activities that engage learners of all ages, from early childhood onward.
This project will integrate experiments and theory based on fundamental soil mechanics to obtain models for predicting the evolution of forces and reactions as machines come into contact with soils to induce large, permanent (plastic) deformations. Significant novelty lies in the complete experimental characterization of force-displacement histories and deformation fields over a wide range of possible motions, considering two fundamental soil types and using the 6-axis robotic arm in the Soil-Machine Interaction Laboratory at Northwestern University for actuation. To overcome the high computational demands of existing numerical methods, the project will formulate an efficient simulation technique based on the Sequential Kinematic Method, an approach that utilizes simplified kinematics and an optimization-based solution scheme to decrease computation times significantly. Since force-displacement histories obtained experimentally or through numerical simulation are applicable only to a single motion or load path, a significant breakthrough pursued in this project is the formulation of a semi-analytical framework capable of predicting force-displacement histories under arbitrary motions and loading conditions. Educational and societal impact will be maximized through sustained outreach, training of undergraduate and graduate students, interaction with industry, and dissemination of results internationally across various platforms, including open-source software written in an architecture advised by industry collaborators. Through collaboration with the Chicago Children's Museum and Chicagoland maker fairs, the project aims to stimulate interest in engineering and SMI across a wide range of demographics.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
PROJECT OUTCOMES REPORT
Disclaimer
This Project Outcomes Report for the General Public is displayed verbatim as submitted by the Principal Investigator (PI) for this award. Any opinions, findings, and conclusions or recommendations expressed in this Report are those of the PI and do not necessarily reflect the views of the National Science Foundation; NSF has not approved or endorsed its content.
This project collected fundamental data and formulated essential theoretical models characterizing interactions between machines and soils, thus enabling advances in civil construction, mining, agriculture, and mobility. Data gathered in the Soil-Machine Interaction (SMI) Laboratory at Northwestern University was used to devise and validate highly efficient and accurate theoretical techniques that can predict the forces and deformations as elemental machine components come into contact with soil. These models unlock possibilities for design and virtual prototyping of future earth-manipulating machines and terrestrial robots, as well as computational techniques that can be used for path planning and control. While anticipated outreach activities with the Chicago Children's Museum and Chicagoland maker fairs were derailed by the COVID-19 pandemic, the project succeeded in engaging numerous undergraduate and graduate students at Northwestern University through various classes and programs, thus stimulating intergenerational interest in a new area of research at the intersection of civil and mechanical engineering. It helped the Principal Investigator, now at the University of Cambridge in the United Kingdom, build a self-sustaining research program dedicated to this new research area, and it directly or indirectly supported numerous research students and post-doctoral researchers, including four PhD students, one MS student, two post-doctoral research associates, and seven undergraduate researchers. Preliminary findings have been published in journal articles and presented at various national and international conferences, and efforts will continue to disseminate key findings available in dissertations.
Last Modified: 09/27/2024
Modified by: James P Hambleton
Please report errors in award information by writing to: awardsearch@nsf.gov.