
NSF Org: |
CNS Division Of Computer and Network Systems |
Recipient: |
|
Initial Amendment Date: | April 25, 2019 |
Latest Amendment Date: | May 4, 2023 |
Award Number: | 1844952 |
Award Instrument: | Continuing Grant |
Program Manager: |
Marilyn McClure
mmcclure@nsf.gov (703)292-5197 CNS Division Of Computer and Network Systems CSE Directorate for Computer and Information Science and Engineering |
Start Date: | June 1, 2019 |
End Date: | May 31, 2025 (Estimated) |
Total Intended Award Amount: | $500,000.00 |
Total Awarded Amount to Date: | $532,000.00 |
Funds Obligated to Date: |
FY 2020 = $113,067.00 FY 2021 = $99,890.00 FY 2022 = $118,822.00 FY 2023 = $105,872.00 |
History of Investigator: |
|
Recipient Sponsored Research Office: |
845 N PARK AVE RM 538 TUCSON AZ US 85721 (520)626-6000 |
Sponsor Congressional District: |
|
Primary Place of Performance: |
888 N Euclid Ave Tucson AZ US 85719-4824 |
Primary Place of
Performance Congressional District: |
|
Unique Entity Identifier (UEI): |
|
Parent UEI: |
|
NSF Program(s): |
Special Projects - CNS, CSR-Computer Systems Research |
Primary Program Source: |
01001920DB NSF RESEARCH & RELATED ACTIVIT 01002021DB NSF RESEARCH & RELATED ACTIVIT 01002122DB NSF RESEARCH & RELATED ACTIVIT 01002223DB NSF RESEARCH & RELATED ACTIVIT 01002324DB NSF RESEARCH & RELATED ACTIVIT |
Program Reference Code(s): |
|
Program Element Code(s): |
|
Award Agency Code: | 4900 |
Fund Agency Code: | 4900 |
Assistance Listing Number(s): | 47.070 |
ABSTRACT
On-chip caches are important due to their substantial impact on the energy consumption and performance of a wide variety of computer systems, including desktop computers, embedded systems, mobile devices, servers, etc. As an alternative to traditional static random-access memory (SRAM) for implementing caches, the spin-transfer torque RAM (STTRAM) is a type of non-volatile memory that promises several advantages, such as high density, low leakage, high endurance, and compatibility with complementary metal-oxide-semiconductor (CMOS). However, STTRAM caches still face critical challenges that impede their widespread adoption, such as high write latency and energy. In addition, users of computer systems and the programs that run on the systems typically have variable resource requirements, necessitating caches that can dynamically adapt to runtime needs.
This CAREER project will investigate several interrelated research problems, including: STTRAM's characteristics and how they can be leveraged for improving the energy efficiency and performance of computer systems that run diverse programs; techniques for improving the user's experience while running the programs; new architectures and management techniques for enabling STTRAM caches that are energy-efficient and can dynamically adapt to running programs? individual needs; and novel methods to address the challenges of implementing STTRAM caches in complex multicore computer systems. Ultimately, the project will develop STTRAM cache architectures that can automatically adapt to the execution needs of diverse programs, resulting in more energy-efficient and faster computer systems.
The project's broader impacts include architectures and methods that will improve the performance and energy efficiency of a wide variety of computer systems for running a wide variety of programs. With the growth of the Internet of Things (IoT), spanning diverse computing and user needs, this project represents an important and necessary step towards adaptable and low-overhead computer systems. This CAREER project also seeks to foster education and diversity in science, technology, engineering, and math (STEM) fields through K-12 seminars, and by engaging and equipping a diverse group of young engineers with necessary techniques and skills to design innovative solutions for energy-efficient and adaptable Internet of Things architectures.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
PUBLICATIONS PRODUCED AS A RESULT OF THIS RESEARCH
Note:
When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external
site maintained by the publisher. Some full text articles may not yet be available without a
charge during the embargo (administrative interval).
Some links on this page may take you to non-federal websites. Their policies may differ from
this site.
Please report errors in award information by writing to: awardsearch@nsf.gov.