Award Abstract # 1817029
SaTC: CORE: Small: URadio: Towards Secure Smart Home IoT Communication Using Hybrid Ultrasonic-RF Radio

NSF Org: CNS
Division Of Computer and Network Systems
Recipient: BOARD OF REGENTS OF THE UNIVERSITY OF NEBRASKA
Initial Amendment Date: July 16, 2018
Latest Amendment Date: August 24, 2018
Award Number: 1817029
Award Instrument: Standard Grant
Program Manager: Phillip Regalia
pregalia@nsf.gov
 (703)292-2981
CNS
 Division Of Computer and Network Systems
CSE
 Directorate for Computer and Information Science and Engineering
Start Date: September 1, 2018
End Date: October 31, 2019 (Estimated)
Total Intended Award Amount: $499,999.00
Total Awarded Amount to Date: $499,999.00
Funds Obligated to Date: FY 2018 = $95,502.00
History of Investigator:
  • Qiben Yan (Principal Investigator)
    qyan@msu.edu
  • Qin Zhou (Former Co-Principal Investigator)
Recipient Sponsored Research Office: University of Nebraska-Lincoln
2200 VINE ST # 830861
LINCOLN
NE  US  68503-2427
(402)472-3171
Sponsor Congressional District: 01
Primary Place of Performance: University of Nebraska-Lincoln
NE  US  68503-1435
Primary Place of Performance
Congressional District:
01
Unique Entity Identifier (UEI): HTQ6K6NJFHA6
Parent UEI:
NSF Program(s): Secure &Trustworthy Cyberspace
Primary Program Source: 01001819DB NSF RESEARCH & RELATED ACTIVIT
Program Reference Code(s): 025Z, 7434, 7923, 9150
Program Element Code(s): 806000
Award Agency Code: 4900
Fund Agency Code: 4900
Assistance Listing Number(s): 47.070

ABSTRACT

Recent years have seen the explosion of smart home Internet-of-Things (IoT) devices and platforms, underscoring the need to address security and privacy of smart home communications. The demand for IoT devices (e.g., smart speakers, locks, and activity trackers) is occurring while radio spectrum, a necessary ingredient for wireless service, becomes increasingly scarce. As a result, multiple wireless technologies coexist and compete for spectrum resources, resulting in degraded spectrum efficiency and security. This project aims to enhance the reliability and security of smart home networks by leveraging the security and energy efficiency properties of ultrasonic communication, and by integrating them with radio-frequency technology. The success of this project will result in a new communication system that can provide secure and reliable communication on two different types of spectrum - radio-frequency and ultrasound - to help alleviate the crowded radio frequency spectrum and prevent aggregated security attacks. The proposed project aims to significantly improve the security of smart home networks, and will also have a positive impact on education through the creation of new wireless security course projects and modules; provision of research training opportunities for undergraduate and graduate students of underrepresented groups; and broad dissemination of project results through high-profile tutorials, talks, publications, software tool kits, and open-source sites.

The goal of this project is to develop novel, practical and foundational solutions to secure smart home IoT networks. The research focuses on the following objectives: 1) Develop and assess the performance of a hybrid ultrasound/radio-frequency transceiver using a wideband ultrasonic transducer to enable secure and reliable IoT communication by leveraging phased acoustic array technology; 2) Ensure the robustness of IoT communications by developing multiple-input multiple-output (MIMO) interference cancellation and directional ultrasonic anti-jamming communication technologies; and 3) Design a location-restricted device authentication mechanism without the reliance on credentials by leveraging signal features of the ambient radio-frequency and ultrasonic signals, aiming for for immediate and trustworthy authentication of IoT devices. The proposed solution will be tested using large-scale simulations and experimentally tested via software-defined radio testbeds and ultrasonic radio prototypes. The project pursues advances in our understanding of security in smart home IoT networks, thereby providing guidance on the design of next-generation smart home systems.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Please report errors in award information by writing to: awardsearch@nsf.gov.

Print this page

Back to Top of page